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• Describe my area of expertise, which is actuarial science. 

Development of Actuarial Science 

• According to Merriam-Webster (2001), an actuary calculates insurance 

premiums, reserves, and dividends. According to the Dictionnaire 

Robert historique de la langue française (1994), actuaire is a term 

derived from the latin actuarius, which was used in ancient Rome to 

refer to scribes (or secretaries, stenographers) who wrote the official 

proceedings. 

 

• The actuary plays an important role in the "design", the management 

and the control of the insurance products, income, insurance schemes 

and collective insurance, as well as social security programs, with 

millions of people depending on their current and future financial 

security. 
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• Besides solid mathematical, statistical, and probability knowledge, an 

actuary should also be familiar with finance, economics, management, 

and marketing, regardless of any insurance or pension legislation. 

 

• Villagers come to the aid of their fellow members when one of them is 

battered by an unforeseen event.  

 

• It could be monetary or material aid, or it could even be the provision of 

bras approved to be used within the community to cultivate their fields 

for a short period of time.  

 

• It was the primitive form of insurance that remains in effect in some 

African countries; however, with the advent of the industrial revolution, 

many members of these communities migrated into the cities to seek a 

better life for themselves.  
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• Once in the cities, this initial village solidarity collapsed because people 

rarely saw each other or spoke very little due to relatively primitive 

communications. 

 

•  During this period, the first insurance companies were formed, as 

workers obtained their lowest wages in the factories, which meant they 

had difficulty meeting their own needs and those of others in their 

community, as well as all the risks associated with industrial 

development. 

 

• Actuaries first appeared in Great Britain at the end of the 19th century. 

 

• Actuaries are in fact needed due to the industrial revolution, which 

created the need for large companies to define financial risks and put 

in place plans to protect themselves. 

 

• Since the industrial revolution, there have been numerous forms of 

insurance designed to reduce risk. 
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• A growing number of actuaries are being asked to model these risks 

and develop the tools necessary to protect enterprises from them. 

 

 

• In London, the first Institute of Actuaries formed around the turn of the 

nineteenth century, while in Edimbourg, a Faculty of Actuaries was 

established at the same time. 

 

• Actuaries are primarily influenced by the maritime industry on this side 

of the Atlantic. 

 

• The fact is that Nathaniel Bowditch was one of the pioneers in this field. 

 

• Having been born in Salem in 1773, he worked as a clerk during his 

young years, which allowed him to travel across the ocean several 

times. 
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• At the age of 18, he had already copied all the mathematic writings he 

had come across concerning the Transactions of the Royal Society of 

London. 

 

• In addition to his contributions to mathematical sciences, Nathaniel 

Bowditch also contributed to the development of physiology and 

astronomy theories. 

 

• Later, he applied his science to a maritime insurance company as 

president, appointing him as the first American actuary. 

 

• A few years later, or in 1889, the first association of the profession in 

North America was formed and called the "Actuarial Society of 

America". 

 

• It was established in 1907 in Toronto that the first club of actuaries 

became the Association Canadienne des Actuaires, a non-constituted 

organization. 
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• The purpose of this association is to promote the knowledge of 

actuaries among its members. 

 

• In 1965, the Association of Canadian Actuaries became the ICA, the 

current Canadian Institute of Actuaries. 

 

• When the Association is created, all members are enrolled in the 

Institute. 

While the role of the actuary has always primarily been to calculate 

insurance passifs, today's actuary can also deal with issues related to 

public policy. 

Actuaries play a significant role in the establishment of our modern 

economy in Canada 
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Professional Status 

• South Africa 

 

• North America (USA & Canada)  

 
- Actuaries in America are required to pass a series of exams in order 

to become licensed.. These exams are administered by two 

organizations: the Society of Actuaries (SOA) and the Casualty Actuarial 

Society (CAS). In essence, this system of professional examinations is 

intended to harm the knowledge levels and status levels of actuaries 

(associates and fellows). After passing the ensemble of exams, an 

actuary obtains the title of Fellow (of the SOA or CAS). Candidates or 

candidates who have completed part of the exams (e.g. two tiers) are 

referred to as Associate. 
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- SoA members work primarily in the fields of insurance and retirement 

income, health insurance, collective insurance, retirement and retirement 

plans, social security, investments, and finance. 

 
- CAS members work in general insurance, which includes insurance 

for housing, automobiles, maritime, aviation, and liability. Additionally, he 

can work in social security and health insurance. 

 

• UK 

- There is a similar system of qualification in Grande-Bretagne and in 

Australia. 

• In continental Europe, or in the absence of an actuarial science 

program, actuaries are declared qualified after completing a university 

program. 
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The different branches of actuarial science 
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• The actuary's interventions 
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My research interest 

A- General insurance 

From the classic model to the discounted model 
 
Collectif risk model 
 

• Two models to represent the total amount of claims. 

• In the "classic" individual risk model, claims are linked to each policy in 
a portfolio of size n . 

• If  ,X k
k

  is the claim amount associated with the kth policy, then 

the total claim amount for this portfolio is: 

 

1

n

k

k

Z X
=

=  
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• where  ,X k
k

  are non-negative and independent but not 

necessarily identically distributed random variables. 

 

 

 

 

 

   R 

                                                                              Risk related to policyholder i 

 

 

 

 

The total risk of the portfolio is given by 

1 2

1

...
n

ind

n i

i

S X X X X
=

= + + + =  

An actuary is interested in risk measures such as:  

1X  

 

2X  

 

3X  

. 

 iX                                                                                             

. 

nX  
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• Mean 

• Variance, Value at Risk, more generally the moment generating 

function ( ( )
ind

ind

rS

S
M r E e =

  ) 

 

- This model is called individual risk model 

 

Collective risk model 

 

 

 

 

 

 

 

Another approach is called collective risk model 
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•  

•     

•                                                                          Risk related to policyholder i 

•                          

•  

•                                                                                      

•  

 

 

 

• In the collective risk model, risks are no longer considered 
individually but as several shocks that affect the portfolio. 

 

1X  

2X  

3X  

. 

 iX                                                                                             

. 

NX  
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• If ( )N t  represents the number of claims in the period  0, t , and 

 ,X k
k

  is the amount of the kth claim, then we can write 

( )

1

N t

k

k

Z X
=

=  , 

•  ,X k
k

   positive random variables i.i.d, ( ) 1 2, , ,...N t X X
 
 v.a mutually 

independent, for any 0t  . 

 

Importance of the economic environment 

 

 The classic collective model, no account taken of inflation 

 Inflation can have a significant impact on the amounts insured. 
Insurance companies need to know the effect of inflation on their 
total liability when calculating premiums or reserves. 

 Inflation 

▪ Increase in the cost of claims 
▪ Increase in portfolio volume 
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An actuary is interested in risk measures such as:  

 Mean 

• Variance, Value at Risk, more generally the moment generating 

function ( )
coll

coll

rS

S
M r E e =

   

• The collective risk model doesn’t consider time. 

The first model, authors worked with was when is a Poisson process. 

 

 

 

00 T=                       
1T                     

2T                      …                     
nT                      t  

                                                                          ( )N t  

 

The model was later improved by considering that the time between each 

claim can follow any distribution. 
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Discounted renewal amounts with general interest 
rate 

 
-  Model Assumptions: 

 
(i) The claims number process ( ) , 0N t t   forms an ordinary renewal 

process and, for  1,2,3,...k =  , i.e. : 

• The time when the k-th claim occurs is represented by the positive 

variable  ,kT k . 

• the positive variable representing the time between two consecutive 

claims is given by    k
= T

k
−T

k−1
 , with  

  
T

0
=0  and common distribution 

function F . 

(ii) the variable representing the amount of the claim, without inflation, is 

given by  ,X k
k

 , where : 

•  ,X k
k

  are i.i.d, 
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•  , ;X k
k k

  are mutually independent. 

• the moment generating function of 
  
X

1
,  

XM  exist over , 

•  0 k kE X =    

(iii)  ( )t  , deterministic or random force of interest. 

(iv) The total discounted (net) value at time t  of the total claims over the period 

  
0, t   is denoted respectively, for the ordinary and delayed case, by: 

 

  
Z t( )= D T

k( )X
k

k=1

N t( )

  , 

( ) 0Z t =  si ( ) 0N t = ,  

  

D T
k( )= exp −  x( )dx

0

T
k













 , 

 
 

- Higher Moments 
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Lemma 1.  
Consider an ordinary or delayed renewal process, as described above. 

Then, for any   0 = x
0
 x

1
 x

2
 ... x

k
 t ,   i0 = 0 ,   1 i

1
 i

2
 ... i

k
 n and 

  1 k  n , the conditional joint distribution of Ti1 , Ti2 ,...,Tik N t( )= n is given 

by : 
 

f
Ti1 , Ti2 ,..., Tik N t( )

(x1, x2 ,..., xk n) =

P N t − xk( )= n − ik( ) fTi j -i j−1

x j − x j−1( )
j=1

k



P(N(t) = n)
  .    
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- Higher Moments 
 
 Deterministic force of interest 

 
Theorem 1 
With the same assumptions as before, the first moment of the expected 
renewal sum is given, for  0t   and for a deterministic force of interest, 
by: 

 

( )   ( ) ( )1

0

t

E Z t E X D v dm v  =                                    

  

Proof: 

( ) ( )   ( ) ( )1

1 0

( )
k

tn

T N t n
k

E Z t N t n E X D v f v dv
=

=

 = =    
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- Higher Moments 
 
 

 Stochastic force of interest 

Theorem 2 

With the same assumptions as before, the first moment of the expected 
renewal sum is given, for  0t   and for a stochastic force of interest, by: 

 

( )   ( ) ( )1

0

t

E Z t E X E D v dm u   =     

 

 

 

 

 

 

 

 

 
 



 

23 

Proof 

( ) ( ) ( ) ( )

  ( ) ( )

1

1

1

n

k k

k

n

k

k

E Z t N t n E D T X N t n

E X E D T N t n

=

=

 
 = = =  

 

 
= = 

 



  

 

• For each sample path of ( )x : 

 

( ) ( )   ( ) ( ) ( )  

  ( ) ( )1

0

, 0, , , 0,

t

E Z t x x t E E Z t N t x x t

E X D v dm v

      =      

= 
 

 

 

• Last integral, a random variable, a well-known theorem of the theory 
of stochastic processes (see Karatzas (1991), P. 3) 
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Higher Moments 
 
Example 1 

• ( ) , 0t t  , an Itô process satisfying the stochastic differential 

equation of Ho-Lee-Merton 
 

d t( )= rdt +  dB t( ) , 

 

with constant drift  r , volatility   , where ( )B t  is a standard Brownian motion 

(see Oksendal (1992)). 
 

• We have 
 

( )  ( )
2 3

2 2exp 0
2 6

rv v
E D u v

 
= − − +  

 
 

and, 

( )  
( )

( )
2 3

20
2 6

1

0

t rv v
v

E Z t E X e dm v
− − +

  =    . 
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When 
  


k
~ exp  = 1( ), E X1 = 1,  0( )= 0.03, r = 0.002  and  = 0.001. Then, 

using the software ''Maple'', we have the table below 
 

Table 1 :  First moment of ( )Z t  -- Cas Ho-Lee-Merton 

t  1 5 10 15 20 

( )E Z t  
 0.98482309

73 

4.6061153

32 

8.3806863

12 

11.3241284

6 
13.50862840 

t  30 40 50 60 70 
( )E Z t  

 16.089518 17.158952 17.524116 17.626955 17.650864 

 
 
 

 
 

- Higher Moments 
 

 Deterministic force of interest 
Theorem 3 
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With the same assumptions as before, the first moment of the expected 
renewal sum is given, for  0t   and for a deterministic force of interest, 
by: 

 

( ) ( ) ( )

  ( ) ( ) ( ) ( )

2 2 2

1

0

2

1

0 0

t

t t v

E Z t E X D v dm v

E X D u v D v dm v dm u

−

   =   

+ +



 

 

 
 
 
 
 
 

 Stochastic force of interest 
 

Theorem 
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With the same assumptions as before, the first moment of the expected 
renewal sum is given, for  0t   and for a stochastic force of interest, by: 
 

( ) ( ) ( )

  ( ) ( ) ( ) ( )

2 2 2

1

0

2

1

0 0

t

t t v

E Z t E X E D v dm v

E X E D u v D v dm v dm u

−

     =     

 + + 



 

 

 
Example 2 

• ( ) , 0t t  , an Itô process satisfying the stochastic differential 

equation of Ho-Lee-Merton 
 

d t( )= rdt +  dB t( ) , 

 

with constant drift  r , volatility   , where ( )B t  is a standard Brownian Motion 

(see Oksendal (1992)). 
 

• We have 



 

28 

 

( )  ( )2 2 2 32
exp 2 0

3
E D u v rv v

 
= −  − +  

 
,    

 

( ) ( )  ( ) ( )
( )

3 32
2 2

2
exp 0 2 2

2 2 6

u v ur
E D u v D v u v u uv v

  + + 
  + = −  + − + + +      

    

 

and, 

( )
( )

( )

 
( ) ( )

( )

( ) ( )

2 2 3

3 32
2 2

2
2 0

2 3
1

0

2
0 2 2

2 2 62

1

0 0

t
v rv v

u v ur
t t v u v u uv v

E Z t E X e dm v

E X e dm v dm u

−  − + 

 + +
   −  −  + − + + +     

 

   =   

+



 

 . 

When 
  


k
~ exp  = 1( ), E X1 = 1,  0( )= 0.03, r = 0.002  and  = 0.001. Then, 

using the software ''Maple'', we have the table below 
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Table 2 Second moment of ( )Z t  -- Cas Ho-Lee-Merton 

t  1 5 10 15 20 
( )2E Z t  

 

2.909785

123 

29.72458

394 

84.470666

79 

145.9729

435 

202.178562

1 

t  30 40 50 60 70 
( )2E Z t  

 
280.0771 315.9860 328.7405 332.3813 333.2318 

 
 
 
 
 
 

- Joint moments 
 

 Constant force of interest 
 
Lemma 2 
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For the same risk process and for any   t  0,   h  0,    0  and 

  
u,v( ) , the joint moments generating function between ( )Z t  and 

( )Z t h+  satisfies the following equation 

 

M
Z t( ), Z t+h( ) u,v( )= F1

t + h( )+ M X ve
−x( )M Z t+h−x( ) ve

−x( )dF1
x( )

t

t+h



+ M X u + v( )e−x( )M Z t−x( ), Z t+h−x( ) ue
−x ,ve−x( )dF1

x( )
0

t

   .

 

 
 

 
Theorem 5 
For the same hypotheses, and for a constant force, the recurrence formula of the 

joint moment, for ,n m  , is given by 
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E Z n (t) Z m (t + h)  = E X1

k 
n

i






i= k−m +

min k , n( )


m

k − i






k=1

n+m



                                     e− n+m
( )uE Z n−i (t − u) Z m− k−i

( )
(t + h − u)  dm u( )

0

t

  .

 

 Stochastic force of interest 
Theorem 6 
For the same hypotheses, and for a stochastic force, the joint moment, of 

 
Z t( ) and 

 
Z t + h( ) are given, for   t  0 and   h  0, by  

 

( ) ( ) ( )

  ( ) ( ) ( ) ( )

2

2

1

0

                                       ,

t t h u

t u

E Z t Z t h E Z t

E X E D u D u v dm v dm u

+ −

−

  + =   

 + +  
 

- Moments generating function 
 Deterministic force of interest 

Theorem 7 
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0t  ,s and for a deterministic force of interest ( )t , the formula of 

the moments generating function is given by 
 

( ) ( ) ( ) ( )( ) ( ) ( ) ( )
1 1 1 1

1

1

1 1

0 10

... ...

n

t t t n

X i n n nZ t

n iu u

M s F t M sD u F t u dF u u dF u
+

+

= =

= + − −       

 
 Stochastic force of interest 

Theorem 
 

0t  ,s and for a stochastic force of interest ( )t , the formula of the 

moments generating function is given by 
 

 

( ) ( ) ( ) ( )( ) ( ) ( ) ( )
1 1 1 1

1

1

1 1

0 10

... ...

n

t t t n

X i n n nZ t

n iu u

M s F t E M sD u F t u dF u u dF u
+

+

= =

 
= + − − 

 
     

 



 

33 

Two related applications 

- Predictors 
Linear predictor 
Our linear predictor can therefore be rewritten in the following form: 

( ) ( ) ( )
( )

( )
( ) ( )

1
2

, ,  .
V Z t h

L t h E Z t h t h Z t E Z t
V Z t


 +    = + + −            

 

Now consider the special case where the amount of claims follows a 
degenerate distribution at 1, the number of claims follows a Poisson 
distribution with parameter 1 =  and 0.005 = . Then, taking into account 
the identities already obtained, either 

( )  ( )  ( )
( )

 1 22 2

2

1 1 1
  ,     , , ,

2 1

t t t

t h

e e e
E Z t Var Z t t h

e

− − −

− +

− − − 
= = =  − 

  




 
 

we can first simulate the value of ( )Z t , then we compare the simulated 

value of ( )Z t h+  with that of ( ),L t h  in the following table, for different 

values of t  and of h . 
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Table 3 Comparison between ( ) ( )simulZ t h Z t+  and ( ),L t h  

t  h  ( )Z t  ( ) ( )simulZ t h Z t+  ( ),L t h  

1 0.01 0.967 1.007 1.012885876 

1 1 0.967 1.927 1.995465089 
1 10 0.967 11.011 10.70840225 

10 0.01 9.985 9.999 9.994512056 

10 1 9.985 11.113 10.93385531 

10 10 9.985 20.037 19.26340129 

100 0.01 100.1 100.241 100.1060652 

100 1 100.1 101.136 100.7050169 
100 10 100.1 110.077 106.016169 
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Quadratic predictor 
 

( ) ( ) ( )2,Q t h a bZ t cZ t= + +  

( ) ( ) ( ) ( ) 
( ) ( ) ( ) ( ) ( ) ( ) 

( ) ( ) ( ) ( ) ( ) ( ) 

2 4 2 3

4 2 3

4 2 3       

a E Z t h E Z t E Z t E Z t

E Z t Z t h E Z t E Z t E Z t E Z t

E Z t Z t h E Z t E Z t E Z t E Z t

       = + −       

        − + −         

        + + −         

 

 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) 

( ) ( ) ( ) ( ) ( ) ( ) 

4 2 3

4 2 2

2 3 2          

b E Z t Z t h E Z t E Z t Z t h E Z t

E Z t E Z t h E Z t E Z t Z t h E Z t

E Z t E Z t h E Z t E Z t E Z t Z t h

       = + − +       

        − + − +         

        + + − +        
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( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) 

( ) ( ) ( ) ( ) ( ) ( ) 

2 2 3

2 3

2 2      

c E Z t Z t h E Z t E Z t Z t h E Z t

E Z t E Z t Z t h E Z t E Z t h E Z t

E Z t E Z t h Z t E Z t E Z t E Z t h

       = + − +      

        − + − +        

        + + − +        
 

 

and, 
 

 ,    ,    .a b ca b c
  

= = =
  
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Table 4 Comparison between ( ) ( )simulZ t h Z t+  and ( ),Q t h  

t  t  ( )Z t  ( ) ( )simulZ t h Z t+  ( ),Q t h  

1 0.001 0.967 1.007 1.010867476 

1 1 0.967 1.927 1.945560054 

1 10 0.967 11.011 10.80720814 
10 0.01 9.985 9.999 9.997016090 

10 1 9.985 11.113 11.09221136 

10 10 9.985 20.037 19.54650814 

100 0.01 100.1 100.241 100.1844870 

100 1 100.1 101.136 100.9025264 

100 10 100.1 110.077 108.223459 
-  
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- Predictor 
Lundberg Inequality-Cai-Dickson  

 

To the Sparre Andersen model defined in Chapter 2, Cai & Dickson 
incorporate the constant interest force. They consider that the insurer 
receives interest on its surplus process at a constant force 0  . This 

surplus process noted ( )U t  is given by  

( )

( ) ( )

1

1

1 1

1

1 1

1

.

.

.

1

1
exp

n

n

n

n n n

T n k
T

k i

k i

e
U T ue Y

e
U T U T e Y

e
ue X









  −




= =

 −
= +  − 

 

 −
= +  − 

 

 −  
= +  − −   

   
 
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( )

( ) ( )

1

1

1 1

1

1 1

1

.

.

.

1

1
exp

n

n

n

n n n

T n k
T

k i

k i

e
U T ue Y

e
U T U T e Y

e
ue X









  −




= =

 −
= +  − 

 

 −
= +  − 

 

 −  
= +  − −   

   
 

 

 
Suppose that the failure time of this modified surplus process is 

( )( ) inf : 0t U t  =  , where ( )U t  is the surplus at time t  and ( )0U u =  

We note ( )u  the ultimate probability of time to ruin when the force of 

interest is  . Then,  
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( )  u P  =     

Since ruin can only occur upon a claim, we have : 

( ) ( )( ) 1
  0nn

u P U T


 =
 =   

 

For a constant force of interest: 0   , , we note: 
 

0

1
t t

t

e
s e d

−
−



−
=  =

  

. 

Further on, if we define the quantities : 

( ) ( )( ) 1
; 0

n

kk
u n P U T =

 =   

 

then 

( ) ( )lim ;
n

u n u 
→

 =   
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B- Multistate health care model 

• A quick backgroud. 
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• An example of multistate health care model is when an individual is 

healthy then becomes invalid and he may recover from his invalidity 

or died. 

 

• What we mean by durational effect is how long the individual stay in 

each state. 

 

• Norberg in 1995 used the same multistate health care model but 

without durational effect to derive the distribution of the discounted  

 

 

 

B-1 Multistate model for the health status 
The random pattern of states of the policyholder 

For health insurance, contractual guaranteed payments between 

insurer and policyholder are defined as deterministic function of time 
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and of the pattern of states of the policyholder. Before we introduce a 

general modeling framework for that pattern of states, we give two 

examples of customary health insurance contracts. 

Example1 (disability insurance) 

A disability insurance or permanent health insurance (PHI) provides an 

insured with an income if the insured is prevented from working by 

disability due to sickness or injury. It is usually modeled by a multiple 

state model with state space  

 : / , / ,S a active healthy i invalid disabled d dead= = = =  

 

 

 

Disability insurance may be categorized as life or pension insurance 

rather than health insurance. 

Example2 (critical illness insurance) 

a i 

d 
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A critical illness insurance or dread disease insurance (DD) provides 

the policyholder with a lump sum if the insured contracts illness 

included in a set of diseases specified by the policy conditions. The 

most common diseases are heart attack, coronary artery disease 

requiring surgery, cancer and stroke. For example, it can be modeled 

by a multistate structure with space 

0

/ , / ,

: ,d

a active healthy i invalid disabled

S d dead due to dread disease

d dead due to other causes

= = 
 

= = 
 

= 

 

 

Example3 (Long-term care insurance) 

A long-term care insurance (LTC) provides financial support for 

insureds who are in needs of nursing or medical care. 

The needs for care due to the frailty of an insured is classified 

according to the individual’s ability to take care of himself by performing 

a i 

0d  
dd  
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activities of daily living such as eating, bathing, moving around, going 

to toilet, or dressing. 

LTC policies are commonly modeled by multistate models, and the 

state space usually consists of the states actives, dead, and the 

corresponding levels of frailty. For example in Germany three different 

levels of frailty are used and, moreover, lapse plays an important role. 

Thus, we have a state space of 

 

 

 

 

/ , ,

,
:

,

/ ,

I

II

I

a active healthy C need for basic care

C need for medium care
S

C need for comprehensive care

l lapse cancel d dead

= = 
 

= 
=  

= 
 = = 
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Let the random pattern of states of an individual policyholder be given by 

a pure jump process ( )( )0
, , , t t

P X


   with finite state space S  and right 

continuous paths with left-hand limits, representing the state of the policy 

at time 0t  . We further define the transition 

space ( ) : ,J i j S S i j=    , the counting processes 

( ) (   ( ): # 0, , , ,jkN t t X k X j j k J−=  = =    

the time of the next jump after t   

a  
IC  

l  

D  

IC  

IC  
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( )  : min ,T t t X X −=     

the series of the jump times 

 

and a process that gives for each time the time elapsed since entering 

the current state, 

    : max 0, , ,t u tU t X X for all u t t=  =  −   

also denoted as duration process. Instead of using a jump process 

( )
0t t

X


, some authors describe the random pattern of states by a chain of 

jumps. The two concepts are equivalent. 

 

o The semi-Markovian approach 

The random pattern of states ( )
0t t

X


 is called semi-Markovian, if the 

bivariate process ( )
0

,t t t
X U


 is a Markovian process, which means that 

for all , 0i S u  , and 1... 0nt t t   we have 

( )0 1: 0, : , ,n nS S T S n−= = 



 

48 

( ) ( )( ) ( ) ( )( )
1 1

, , , ,..., , , , ,
n n n nt t t t t t t t t tP X U i u X U X U P X U i u X U= = =  

almost surely. In the following we always assume that the initial state 

( )0 0,X U  is deterministic. (Note that 0 0U =  by definition). In practice that 

means that we know the state of the policyholder when signing the 

contract. With this assumption and the Markov property for ( )
0

,t t t
X U


 we 

have that the probability distribution of ( )
0

,t t t
X U


is already uniquely 

defined by the transitions probability matrix 

( ) ( )( )
( ) 2,

, , , , ,t t s s j k S
p s t u v P X k U v X j U u


= =  = = , 

0 , 0u s t v      . 

Alternatively, we can also uniquely define the probability distribution of 

( )
0

,t t t
X U


 by specifying the probabilities 
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( ) ( )( )
( )

( ) ( ) ( )( )
( ) ( )( )

2,
, , , , ,

, , : , , , ,

, , : , .

j k j k S

j k s sT s

j j s s

p s t u p s t u

p s t u P T s t X k X j U u j k

p s t u P T s t X j U u


=

=  = = = 

= −  = =

 

A third way to uniquely define the probability distribution of ( )
0

,t t t
X U


is 

to specify the cumulative transition intensity matrix 

( ) ( )( )
( )

( )
( )

( )( 

2,

,

, , ,

, ,0
, : , 0 .

1 , ,0

j k j k S

j k

j k

j js t

q s t q s t

p s d
q s t s t

p s


=

=    
− −





 

If ( ),q s t  is differentiable with respect to t , we can also define the 

transition intensity matrix 
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( ) ( )
( )

( )

( ),

, ,0

, : , ,
1 , ,0

j k S S

j k

j k

j j

d
p s t

d dtt t s q s t
dt p s t

 

 
 

− = =  
−

 
 

  

• which is some form of multistate hazard rate. The quantity 

( ),j k t t s−  gives the rate of transitions from state j  to state k  at 

time given that the current duration of stay in j  is t s− . 

B-2 The health insurance contract 
Payments between insurer and policyholder are two types: 

(a) The amount ( ),j kb t u is payable  if the policy jumps from state j  to 

state k  at time t  and the duration of stay in j  state was u . In the 

Markovian approach the parameter u  plays no role, and we 

write ( ) ( ),j k j kb t u b t= .  
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In order to distinguish between payments from insurer to insured and 

vice versa, benefit payments get a positive sign and premium 

payments get a negative sign. 

 

(b) Annuity payments fall due during sojourns in a state and are 

defined by deterministic functions ( ), ,jB s t j S . Given that the last 

transition occurred at time s , ( ),jB s t  is the total amount paid in  ,s t  

during a sojourn in state j . We assume that the ( ), .jB s  are right 

continuous and of bounded variation on compacts.  

We assume that all contractual payments happen only on the time 

interval [0, ]n . In insurance practice, n  is for example the maximum age 

of a life table.  

By statute the insurer must at any time maintain a reserve in order to 

meet future liabilities in respect of the contract. This reserve bears 

interest with some rate ( )t . On the basis of this interest rate we define 

a discounting function, 
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( )
( )

, :

t

s

r dr

v s t e
−

=


. 

We can interpret ( ),v s t  as the value at time s  of a unit payable at time 

t s . Next, we study the present value of future payments between 

insurer and policyholder, that is, the discounted sum of all future benefit 

and premiums payments, 

( ) ( )   ( )
( 

( ) ( ) ( )
( ( )

1

0 ,

, ,

: , 1 ,

, , .

l l j lS S

j S l t n

j k j k

j k J t n

A t v t B S d

v t b U dN

+



 

 =



=

+

 

 





 

  
 

The quantity ( )A t  is the amount that an insurer needs at time t  in order 

to meet all future obligations in respect of the contract. Since we 

assumed that there are no payments after time n , we have ( ) 0A t =  for 

t n . 

Linking our paper to Norberg (1995), we may alternatively write 
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( ) ( ) ( )
( ,

,
t n

A t v t dB=    , 

where from Norberg’s definition, ( )B t  is the random total amount paid in 

the time interval  0, t . 
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Conclusions 

 Extension of the results obtained by Léveillé and Garrido regarding 
expected renewal amounts. 

 We have proposed explicit formulas for the first two moments of the 
discounted renewal sum with a general strength of interest as well as 
the joint moment of our risk model. 

 Developed explicit formulas for higher order joint moments when the 
force of interest is more general and recurrence formulas for the joint 
moments of our risk process. 

 An expression of the moment generating function of the renewal sum 
was found for deterministic forces of interest. 

 An upper bound for the probability of ruin 

 


