



# Statement on Environmental Sustainability

## **OVERVIEW**

UJ has committed itself to improving on its sustainable practices in all of its University activities. The development of the UJ Strategic Plan 2025, anchored in the overarching goal of global excellence and stature (GES), has placed a requirement on the institution to improve on its sustainability footprint.

## Strategic Objective Six

Strategic Objective Six, fitness for global excellence and stature, states that "We will also minimise harmful impact on our environment through managing our carbon footprint, reducing energy and water wastage, encouraging paperless communication, and overall fostering of a culture of responsible stewardship".

UJ has seen a growing commitment towards the goal of being a sustainable institution that strives to implement improvements and actions across all spheres of its campus activities. UJ firmly believes that sustainable development is a long-term commitment and aims to contribute to sustainability by reducing its environmental footprint, while enhancing its contributions to the social and economic development of South Africa.

This report highlights some of the specific focus areas, as well as improvements achieved during 2021.

#### **ENERGY MANAGEMENT**

#### **Carbon footprint**

UJ's carbon footprint analysis was based on its actual 2021 energy consumption. The total carbon footprint for 2021, based on energy consumption from various sources, is approximately 37 692 tons of  $\rm CO_2$  compared to the 41 403 tons reported during 2020 (refer to Tables 17 and 18, respectively). This indicates a decrease of approximately 8,96%. This can be attributed almost entirely to the continued effect of the various COVID-19 lockdown levels that were applied at various times during 2021 with the consequent reduction in foot traffic on all UJ campuses and off-campus facilities.

In considering this figure, the following should be noted:

- UJ has increased its built area footprint by 10,65% as from 2013.
- The Auckland Park Kingsway Campus continued to contribute significantly to the overall carbon footprint with 22 865 tons of CO<sub>2</sub> compared to the overall University footprint of 37 692.
- Infrastructure on the campuses is included in the consumption figures.
- The methodology of measuring the carbon footprint is based on absolute consumption on main campus areas, excluding UJ owned properties that are not designated as part of the campuses.
- It is the first time that reporting on power generation has led to a measurable decrease in the carbon generated by UJ the decrease of carbon generated must also be seen against the 6,501% electricity generated by the solar PV plants. This must also be seen against the fact that at times the solar PV plant was not operating optimally because of the lighter foot traffic on the campuses this will certainly not be the case in 2022.

Table 17: Carbon footprint based on 2021 actual consumption

| Emission<br>Source                                | Kingsway<br>Campus<br>(APK) | Bunting<br>Road<br>Campus<br>(APB) | Doorn-<br>fontein<br>Campus<br>(DFC) | Soweto<br>Campus<br>(SWC) | Total CO <sub>2</sub>            | Total tons<br>of CO <sub>2</sub>    |  |
|---------------------------------------------------|-----------------------------|------------------------------------|--------------------------------------|---------------------------|----------------------------------|-------------------------------------|--|
| Electricity<br>(kWh)                              | 20 593 152                  | 4 984 176                          | 6 487 456                            | 4 074 804                 | 36 139 587                       | 36 140                              |  |
| Natural<br>Gas (GJ)                               | 1 005 967                   | 255 567                            | 234 048                              | 0                         | 1 495 582                        | 1 496                               |  |
| Catbot                                            | 0                           | 0                                  | 0                                    | 0                         | 0                                | 0                                   |  |
| Petrol<br>(fleet)                                 | 159 627                     | 40 060                             | 66 651                               | 41 286                    | 307 624                          | 308                                 |  |
| Diesel<br>(fleet)                                 | 90 423                      | 11 919                             | 36 205                               | 52 383                    | 190 930                          | 191                                 |  |
| Diesel<br>generators                              | 35 217                      | 10 670                             | 6 091                                | 5 905                     | 57 882                           | 58                                  |  |
| Inter-<br>campus<br>bus and<br>staff flights      | 980 083                     | 203 413                            | 443 811                              | 221 906                   | 1 849 213                        | 1 849                               |  |
| Paper used<br>by UJ/<br>KMSA sites                | 277                         | 54                                 | 119                                  | 56                        | 505                              | 1                                   |  |
| Total kg of CO <sub>2</sub>                       | 22 864 745                  | 5 505 859                          | 7 274 381                            | 4 396 339                 | 40 041 325                       | 40 041                              |  |
| Total Tons<br>of CO <sub>2</sub>                  | 22 865                      | 5 506                              | 7 274                                | 4 396                     | 40 041                           | Reduction<br>of Electrical<br>Power |  |
| Solar PV<br>generation<br>(tons CO <sub>2</sub> ) | 1 028                       | 501                                | 411                                  | 410                       | 2 349                            | 6,5%                                |  |
|                                                   |                             |                                    |                                      |                           | Total tons<br>of CO <sub>2</sub> | 37 692                              |  |

This highlights a decrease of 8,96% as compared to the usage in 2020.

The 2021 carbon footprint breakdown is as per Figures 1 and 2 depicted.



Figure 1: CO<sub>2</sub> production per campus

Table 18: Carbon footprint based on 2020 actual consumption

| Emission<br>Source                                | Kingsway<br>Campus<br>(APK) | Bunting<br>Road<br>Campus<br>(APB) | Doorn-<br>fontein<br>Campus<br>(DFC) | Soweto<br>Campus<br>(SWC) | Total CO <sub>2</sub>            | Total tons<br>of CO <sub>2</sub> |  |
|---------------------------------------------------|-----------------------------|------------------------------------|--------------------------------------|---------------------------|----------------------------------|----------------------------------|--|
| Electricity<br>(kWh)                              | 20 708 411                  | 5 845 577                          | 7 988 701                            | 3 457 593                 | 38 000 280                       | 38 000                           |  |
| Natural<br>Gas (GJ)                               | 923 004                     | 334 099                            | 281 928                              | 0                         | 1 539 030                        | 2 416                            |  |
| Catbot                                            | 38 581                      | 0                                  | 0                                    | 0                         | 38 581                           | 39                               |  |
| Petrol<br>(fleet)                                 | 163 373                     | 30 746                             | 71 159                               | 61 342                    | 326 620                          | 327                              |  |
| Diesel<br>(fleet)                                 | 229 424                     | 23 325                             | 54 062                               | 51 435                    | 358 246                          | 358                              |  |
| Diesel<br>generators                              | 62 102                      | 0                                  | 2 353                                | 47 565                    | 112 020                          | 112                              |  |
| Inter-<br>campus<br>bus and<br>staff flights      | 520 376                     | 147 276                            | 206 187                              | 108 003                   | 981 842                          | 982                              |  |
| Paper used<br>by UJ/<br>KMSA sites                | 831 905                     | 162 085                            | 356 499                              | 168 182                   | 1 518 671                        | 1 519                            |  |
| Total kg of CO <sub>2</sub>                       | 23 477 176                  | 6 543 107                          | 8 960 889                            | 3 894 118                 | 42 875 291                       | 43 753                           |  |
| Total Tons<br>of CO <sub>2</sub>                  | 23 477.18                   | 6 543.11                           | 8 960.89                             | 3 894.12                  | 42 875.29                        | Reduction                        |  |
| Solar PV<br>generation<br>(tons CO <sub>2</sub> ) | 1 027.59                    | 500.92                             | 410.69                               | 410.30                    | 2 349.50                         | 6,18%                            |  |
|                                                   |                             |                                    |                                      |                           | Total tons<br>of CO <sub>2</sub> | 41 403                           |  |

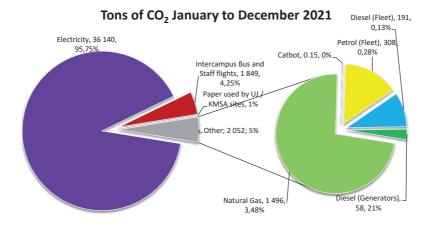



Figure 2: January to December 2021 YTD tons of CO<sub>2</sub> per emission source

#### **Electricity**

For January to December 2021, the University of Johannesburg achieved an electrical energy savings of 37,69%, compared to the 2015 baseline (which is the initial value against which we are required to report going forward) for all properties, based on an absolute measurement methodology. The measurement methodology makes no allowance for infrastructure changes or fluctuations in student or staff numbers. This saving was achieved against an adjusted additional savings from 2020 of the 5,75% target set for the 2021 year, which was not met by the actual savings of 4,9% of Eskom purchased power; however, this must be seen against the context of the 2020 consumption being off a very low base.

The various energy savings initiatives that have started showing positive results are the following:

- The own generation of power through the solar photovoltaic (PV) plants now operating on all four campuses.
- The implementation of energy saving lights (LEDs).
- Occupancy sensors (implementation still ongoing).
- The increased use of gas for water heating at residences on the APB and DFC Campuses.
- The further installation of heat pumps, especially in new and refurbished residences.
- The installation of energy efficient showerheads.
- The installation of load control ripple relays.

Continuing with these types of initiatives, including the introduction of further photovoltaic (PV) systems, together with awareness campaigns, will further improve on savings. Since 2018, savings have been lowest on APK, due to increased HVAC and the growth in specialist research equipment on the campus. Table 19 identifies the 2021 energy savings expressed as a percentage – note that the first three months of 2021 are being compared against a pre-pandemic period in 2020 and therefore show dramatic reductions – after this, slight increases reflect the difference between hard lockdown 2020 consumption and the more relaxed lockdowns and partial return to campuses from June 2021.

Table 19: Electrical energy savings (2021) based on 2020 consumption (includes own generation)

| Month  | АРК     | АРВ     | DFC     | swc     | Total   |  |
|--------|---------|---------|---------|---------|---------|--|
| Jan-21 | -34,99% | -23,55% | -35,77% | -29,74% | -33,19% |  |
| Feb-21 | -36,92% | -39,14% | -42,49% | -36,61% | -38,26% |  |
| Mar-21 | -19,15% | -35,36% | -28,52% | 19,5%   | -20,7%  |  |
| Apr-21 | 25,56%  | -16,95% | 1,44%   | 47,87%  | 15,64%  |  |
| May-21 | 39,16%  | -2,45%  | 16,45%  | 74,33%  | 30,93%  |  |
| Jun-21 | 22,51%  | -12,99% | 10,69%  | 65,03%  | 17,73%  |  |
| Jul-21 | 2,18%   | -19,07% | -12,96% | 25,29%  | -2,23%  |  |
| Aug-21 | 21,75%  | 14,64%  | -0,48%  | 37,44%  | 17,52%  |  |
| Sep-21 | 5,33%   | -2,85%  | -9,63%  | 23,34%  | 2,55%   |  |
| Oct-21 | 0,57%   | -7,66%  | -13,42% | 20,17%  | -1,6%   |  |
| Nov-21 | -1,97%  | -11,41% | -14,09% | 3,18%   | -5,27%  |  |
| Dec-21 | 5,35%   | -10,47% | -0,52%  | 0,05%   | 1,37%   |  |
| Totals | -0,56%  | -14,74% | -12,41% | 17,85%  | -3,42%  |  |

The 2021 YTD total electricity consumption is highlighted in Table 20.

Table 20: 2021 YTD total electricity consumption

| Month  | АРК        | АРВ       | DFC       | swc       | Total      |  |
|--------|------------|-----------|-----------|-----------|------------|--|
| Jan-21 | 1 284 546  | 327 663   | 396 980   | 207 366   | 2 216 555  |  |
| Feb-21 | 1 369 668  | 348 379   | 407 268   | 232 426   | 2 357 741  |  |
| Mar-21 | 1 674 106  | 376 240   | 494 959   | 319 051   | 2 864 356  |  |
| Apr-21 | 1 687 001  | 343 917   | 497 586   | 327 651   | 2 856 155  |  |
| May-21 | 1 960 426  | 414 246   | 584 452   | 395 405   | 3 354 529  |  |
| Jun-21 | 1 926 328  | 426 521   | 626 125   | 402 263   | 3 381 237  |  |
| Jul-21 | 1 815 066  | 431 489   | 589 461   | 383 437   | 3 219 453  |  |
| Aug-21 | 2 045 929  | 583 244   | 658 207   | 432 926   | 3 720 306  |  |
| Sep-21 | 1 671 462  | 458 463   | 584 079   | 357 089   | 3 071 093  |  |
| Oct-21 | 1 804 003  | 475 225   | 557 316   | 377 689   | 3 214 233  |  |
| Nov-21 | 1 556 271  | 390 243   | 497 245   | 314 425   | 2 758 184  |  |
| Dec-21 | 1 198 545  | 263 376   | 404 824   | 206 392   | 2 073 137  |  |
| Totals | 19 993 351 | 4 839 006 | 6 298 501 | 3 956 120 | 35 086 978 |  |

#### Natural gas

Sasol natural gas (Egoli gas) now contributes 3,97% to UJ's total carbon footprint. Natural gas is used mainly in student centres for the purposes of food preparation, as well as in residences for the generation of hot water, and in small quantities at the laboratories for experiments. The saving achieved on gas reduction for 2021 compared to 2015 is 49,3% (again reiterating that the baseline is the 2015 figure for gas consumption). Note that the annual savings – even in the reduced COVID-19 lockdowns in 2020 – have increased further.

Egoli natural gas has a lower  $CO_2$  footprint per gigajoule (GJ) of energy when compared to coal and is therefore a cleaner source of energy. Egoli natural gas will in future be used at a number of residences for heating water and cooking. Since a great deal of gas is used for heating on the APB Campus, there is a plan to trial a 500kW combined heat and power (CHP) power generation facility to simultaneously reduce dependence on Eskom power and to reduce the campus carbon footprint further. The continuing diversification of energy sources, from 2019 onwards, will result in a small but measurable continual reduction in the carbon footprint, especially at the residences.

#### Petrol, diesel and travel related usage

Petrol and diesel fuels are primarily consumed as fuel sources for UJ's vehicle fleet as well as for diesel generators across its main campuses. There are currently 84 generators installed at various points within the UJ infrastructure. Petrol and diesel contribute a small amount to the total carbon footprint, namely 1,48%. It must be noted that increasing occurrence of Eskom load shedding has already produced an increase in diesel usage, and this may result in further substantial  $CO_2$  generation in future, since liquid fuels have a higher  $CO_2$  generation per GJ of energy consumed. There was a small increase in local travel during 2021, but there was a halving of diesel used for backup generators as well as diesel for maintenance vehicles used as standby vehicles during the lockdown periods.

Since 2019, UJ has also started reporting energy consumption and  $CO_2$  generation resulting from the extensive student bus service operated between campuses, as well as the effective  $CO_2$  generation due to staff related national and international flights. In 2021, the renewal of staff flights as well as a subdued return to a more normal student bussing situation resulted in a doubling of carbon generation. For 2021, this carbon generation source was 4,91% of the total UJ generation.

#### Catbot fuel

Catbot fuel is used for the purposes of generating hot water for the central air conditioning plant on APK during the five winter months. Catbot fuel is used to run two hot water generators for the generation of hot water, which is distributed and circulated through the air conditioning system on APK. At present, the catbot fuelled boilers are being repaired and no catbot fuel was used in 2021 at all.

### **WATER MANAGEMENT**

Using water sparingly has become a necessity at UJ. A small water savings was achieved for 2021, and compared to 2015 there has been an overall decrease of only 1,88% against the very low values of 2020. The APK water consumption in 2021 showed only a 2,95% decrease from the 2019 and 2020 data, even after a major pipe leak had been identified and repaired. As far as possible, borehole water is now used on all campuses, and the four new boreholes for supply subvention from 2019 are now in operation.

A number of initiatives implemented in 2021 contributed to some water savings. The key focus areas in the reduction of water consumption for 2019 were as follows:

- Harvesting rainwater for the purpose of irrigation.
- Achieving 95% installation of water restricting showerheads in residences and installing 100% of new residences with low flow showerheads.

The key focus areas in the reduction of water consumption for 2022 are as follows:

- Ensuring that all new student residences make use of push-taps at kitchen hand basins and bathrooms, and trialling push-taps in shower cubicles to reduce water loss due to inadvertent open tap losses after water supply cuts.
- Completing the drilling programmes for an additional new borehole on each of the campuses, for the purpose of using the water for irrigation.
- Benchmarking water usage against other universities and using this as an incentive to increase savings at UJ.
- Conducting further awareness campaigns on campuses and in residences to achieve water savings.
- Continuing with the ongoing installation of water restricting showerheads and extending the retro-fitting of push-taps in residences and ablution facilities as funds and technological factors permit.
- Considering the use of waterless urinals to reduce water consumption and investigating a waste concentration system on the APK Campus to reduce sewage costs and allow for substantial water recovery for irrigation purposes.
- Another grey water trial is expected to be developed in 2022, which, if more successful than in the past, will be extended to other residences and high-traffic ablution facilities.

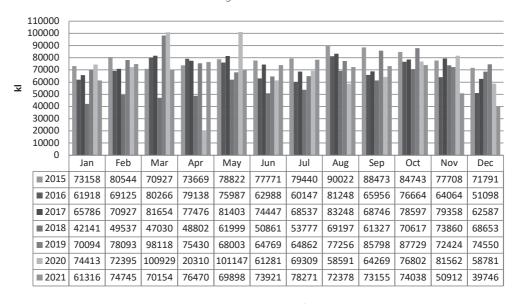



Figure 3: UJ total water consumption comparison from 2015 to 2021

| Month         | Com<br>Paper | White<br>Paper | Plastic | Cans    | E-<br>Waste/<br>F-<br>tubes | Card<br>Boxes | Glass                | Scrap<br>Metal | Wet<br>Waste | Garden<br>Refuse |                 |        |
|---------------|--------------|----------------|---------|---------|-----------------------------|---------------|----------------------|----------------|--------------|------------------|-----------------|--------|
| Total<br>2011 | 22.452T      | 26.934T        | 26.689T | 13.742T | 0.14T                       | 37.427∏ €     | <sub>00</sub> 28.74T | 29.803T        | 0            | 0                | 188.71 <b>T</b> | 3,9%   |
| Total<br>2012 | 42.385T      | 41.505T        | 18.797T | 9.45T   | 1.7T                        | 56.417T       | 30.38T               | 11.108T        | 7.671T       | 0                | 288.27T         | 8,1%   |
| Total<br>2013 | 39.46T       | 40.142T        | 18.028T | 10.005T | 1.21T                       | 37.805T       | 18.793T              | 7.364T         | 14.2T        | 136.5T           | 416.63T         | 17,64% |
| Total         | 40.088T      | 36.855T        | 19.615T | 9.964T  | 1.44T                       | 48.274T       | 13.93T               | 6.768T         | 36.22T       | 325.5T           | 538.7T          | 34,75% |

## **WASTE MANAGEMENT**

An analysis of the different types of waste generated in the reporting year is depicted below, while Table 21 provides an overview of total waste generation compared to recycled waste. Interestingly, Table 22 makes it clear that, in 2021, UJ recycled a substantially larger percentage of its total waste generated – which is admirable, but it must be noted that the absolute amount of waste increased after the very reduced value in 2020 but has not yet reached the pre-pandemic levels of 2019.

Table 21: Different types of waste recycled from January 2011 to December 2021

| Month         | Com<br>Paper | White<br>Paper | Plastic | Cans    | E-Waste/<br>F-tubes | Card<br>Boxes | Glass   | Scrap<br>Metal | Wet<br>Waste | Garden<br>Refuse | TOTAL    | %      |
|---------------|--------------|----------------|---------|---------|---------------------|---------------|---------|----------------|--------------|------------------|----------|--------|
| Total<br>2011 | 22.452T      | 26.934T        | 26.689T | 13.742T | 0.14T               | 37.427T       | 28.74T  | 29.803T        | 0            | 0                | 188.71T  | 3,9%   |
| Total<br>2012 | 42.385T      | 41.505T        | 18.797T | 9.45T   | 1.7T                | 56.417T       | 30.38T  | 11.108T        | 7.671T       | 0                | 288.27T  | 8,1%   |
| Total<br>2013 | 39.46T       | 40.142T        | 18.028T | 10.005T | 1.21T               | 37.805T       | 18.793T | 7.364T         | 14.2T        | 136.5T           | 416.63T  | 17,64% |
| Total<br>2014 | 40.088T      | 36.855T        | 19.615T | 9.964T  | 1.44T               | 48.274T       | 13.93T  | 6.768T         | 36.22T       | 325.5T           | 538.7T   | 34,75% |
| Total<br>2015 | 31.579T      | 51.725T        | 20.335T | 7.117T  | 0.17T               | 63.932T       | 31.521T | 4.071T         | 15.16T       | 329.14T          | 506.51T  | 28,55% |
| Total<br>2016 | 53.681T      | 21.877T        | 34.056T | 6.347T  | 0.11T               | 52.574T       | 16.218T | 17.048T        | 18.68T       | 293T             | 513.6T   | 28,89% |
| Total<br>2017 | 40.667T      | 17.526T        | 42.149T | 8.189T  | 6.08T               | 59.824T       | 27.062T | 0.552T         | 4.61T        | 250.98T          | 456.66T  | 19,56% |
| Total<br>2018 | 37.016T      | 45.997T        | 44.592T | 5.5515T | 1.91T               | 40.346T       | 5.102T  | 1.34T          | 8.82T        | 263.14T          | 521.48T  | 22,54% |
| Total<br>2019 | 32.614T      | 43.121T        | 25.062T | 5.908T  | 3.385T              | 41.16T        | 47.057T | 4.051T         | 15.23T       | 407T             | 625.33T  | 33,65% |
| Total<br>2020 | 21.63T       | 17.98T         | 12.68T  | 2.58T   | 2.72T               | 31.58T        | 19.77T  | 10.26T         | 30.66T       | 524T             | 673.86T  | 47,81% |
| Total<br>2021 | 13.952T      | 17.34T         | 6.31T   | 1.408T  | 3.112T              | 23.877T       | 22.317T | 14.194T        | 12.506T      | 780T             | 895.016T | 51,16% |

Table 22: Waste generated versus waste recycled – 2011 to 2021

| Year | Generated | Recycled | Percentage recycled |
|------|-----------|----------|---------------------|
| 2011 | 4 838.48  | 188.71   | 3,9%                |
| 2012 | 3 559.19  | 288.27   | 8,1%                |
| 2013 | 2 361.88  | 416.64   | 17,64%              |
| 2014 | 1 551.27  | 539.71   | 34,79%              |
| 2015 | 1 773.81  | 506.52   | 28,56%              |
| 2016 | 1 818.89  | 513.60   | 28,24%              |
| 2017 | 2 333.52  | 456.66   | 19,57%              |
| 2018 | 2 312.87  | 521.48   | 22,55%              |
| 2019 | 1 858.48  | 625.33   | 33,65%              |
| 2020 | 1 409.30  | 673.86   | 47,82%              |
| 2021 | 1 749.37  | 895.02   | 51,16%              |

#### **CONCLUSION AND WAY FORWARD**

As mentioned at the outset of this report, the development of the UJ Strategic Plan 2025, anchored in the single strategic goal of global excellence and stature (GES), has placed a requirement on the institution to improve on its sustainability footprint.

The expanding nature of the campuses, increasing student numbers as well as cost containment pressures will create a challenging environment for the institution to meet its sustainability goals. However, a good foundation has been established to measure and manage our sustainability goals into the future.

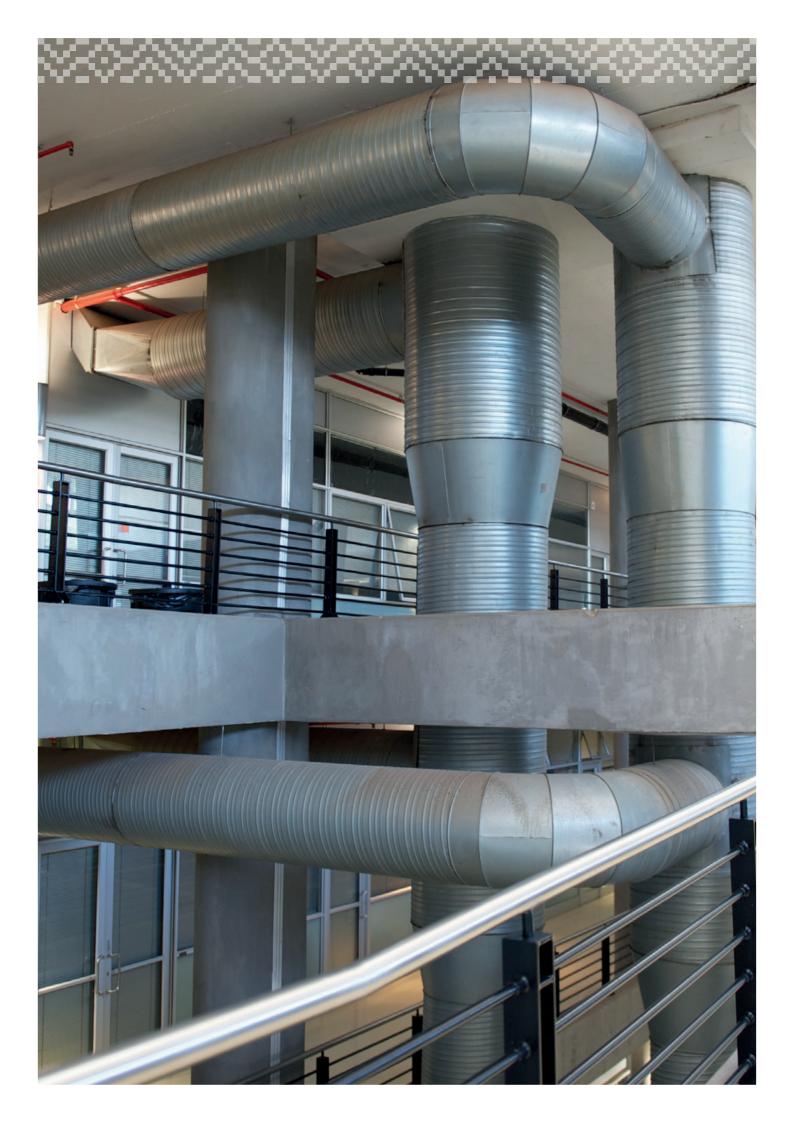
During 2022, the first UJ Sustainability Report using the methodology for environmental reporting (specifically the G4 Sustainability Reporting Guidelines of the global reporting initiative) will be published, and this will allow a more complete review of environmental impacts of areas sometimes invisible to sustainability reporting (such as excessive paper usage). The previously reported initiative will be implemented to report via an effective tenant model for energy and resource usage, and unit-based reporting will become the standard reporting tool in the medium term. This will normalise results for the changing demographics of UJ in terms of the growing residential student population and the increased tenancy of the energy intensive STEM faculties.

The focus areas for 2022 will be to expedite further sustainability projects, such as the third phase of solar photovoltaic installations on the APK, DFC and SWC Campuses, as well as the replacement of geysers with more efficient reverse heat pump solutions in the larger residences. An electric bus initiative will be launched in 2022 and this will affect some of the performance figures positively. Specific additional areas of focus will also include stakeholder engagement, especially with students, the diversification of energy sources with emphasis on renewables, including solar and natural gas, and further technology advancements within sustainability in terms of the new building programmes.

André Nel (Prof)

**Executive Director: Operations** 

André Swart (Prof)


Chief Operating Officer

Tshilidzi Marwala (Prof)

Vice-Chancellor and Principal

Mike Teke (Mr)

Chairperson of Council

