Johannesburg, April 5th, 2019

WHAT ENERGY SYSTEM MODELS CAN TELL US ABOUT THE POTENTIALS AND LIMITS OF A LOW CARBON ECONOMY?

GEFORDERT VOM

Bundesministerium für Bildung und Forschung

WHAT ENERGY SYSTEM MODELS CAN TELL US ABOUT A LOW CARBON ECONOMY?

Bundesministerium für Bildung und Forschung

BEFÖRDERT VOM

WHAT ENERGY SYSTEM MODELS CAN TELL US ABOUT A LOW CARBON ECONOMY?

Orientation Knowledge ?

Bundesministerium für Bildung und Forschung

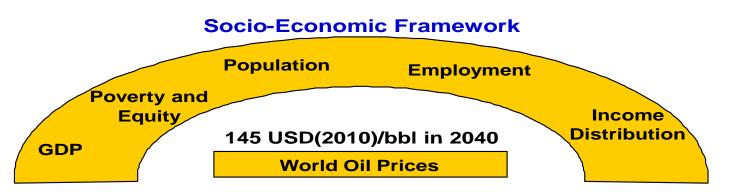
BEFÖRDERT VOM

- Gauteng Province is in the position to take the lead in the country in terms of moving the province to a low-carbon economy
 - by coupling continued economic growth
 - with a less carbon intensive economy
 - while meeting political and social objectives

 The EnerKey study looks at how Gauteng province can achieve these objectives through advanced local energy planning using the TIMES-GEECO model.

(Gauteng Energy and Emissions Cost Optimisation Model)

Integrated Analysis using TIMES


to show the sectoral development with respect to the development in the total energy system

to ensure optimal allocation of scarce resources under consideration of full costs as well as environmental and political targets

- Start from scratch
- Demand Sectors: Residential, Public Buildings, Industry, Commerce, Transport
- Integration into South African energy System where important linkages exist: e.g. Electricity Generation, Fuel Supply, Primary Energy Supply, RE potentials
- 3 Regions (Gauteng, South Africa, Import & Export)
- GHG emissions and Pollutants
- Including mitigation options in terms of alternative technologies for all sectors in focus
- Time horizon 2007 2040, 42 Time-Slices (7 daily, 2 weekly, 3 seasonal)

Capacity building through regular TIMES training courses

Opportunities for Gauteng province to become a forerunner in South Africa

Series of Energy Scenarios

Reference	Low Carbon Province			
Imple- mented	GIES CO ₂ Targets		CO ₂ Emission as required by science	
Policies	Least Cost	Solar Province		
IPO	LGL	LGS	LRS	
Framework assumptions 2007-2040:				

Population: +83% Households: +115%

GDP: +277% Employment: +82% Gini coef.: -0.07

The implemented policies scenario (IPO)

- can be referred to as the reference scenario
- it incorporates mandatory targets and policies which will likely be implemented

The low-carbon required by science scenario (LRS)

- Most stringent GHG mitigation
- Corresponds to the regional contribution of Gauteng to South Africa's GHG mitigation target as outlined in the LTMS to not exceed 2°C of global warming

Options to move Gauteng Province to a low carbon economy

Residential	Transport	Industry & Commerce
Building standards differentiated by income groups CFL and LED Lighting SWH for medium and high income households Biomass for poor and low income	Higher vehicle efficiency (hybrids), especially for busses, BRT, trucks Increased use of biofuels Biodiesel from waste cooking oil BTL from solid biomass	Solar Cooling and Heat Pumps Efficient Compressed Air Systems (CAS) Variable speed drives Retrofit of steel production technologies (best practice)

Energy supply

Concentrated Solar Power (CSP): Parabolic Trough with storage Organic biomass (landfill, sewage) for electricity generation Carbon Capture and Storage (CCS) for power plants and synthetic fuels Nuclear energy (if considered)

WHAT ENERGY SYSTEM MODELS CAN TELL US ABOUT A LOW CARBON ECONOMY?

Orientation Knowledge ?

Bundesministerium für Bildung und Forschung

BEFÖRDERT VOM

WHAT ENERGY SYSTEM MODELS CAN TELL US ABOUT A LOW CARBON ECONOMY?

Orientation Knowledge

- Innovative Technologies
- > Energy Carriers

Bundesministerium für Bildung und Forschung

BEFÖRDERT VOM

WHAT ENERGY SYSTEM MODELS CAN TELL US ABOUT A LOW CARBON ECONOMY?

Orientation Knowledge

> Innovative Technologies

> Energy Carriers

> System Knowledge ?

GEFÖRDERT VOM

Bundesministerium für Bildung und Forschung

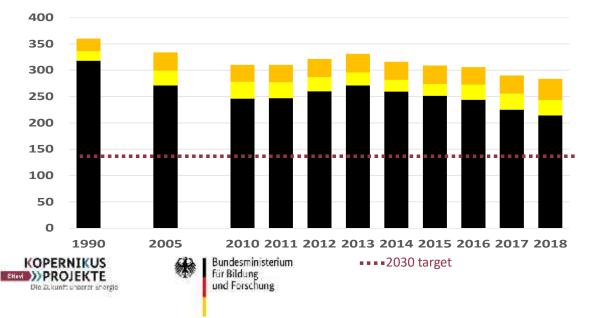
INTRODUCTION

Energy Transition (or 'Energiewende' in German)

- Originally politically charged term of the German environmental movement (since 1970's) for nuclear phase-out and conversion to renewable energy
- In 2010, the Energy Concept of German Government stated "Securing a reliable, economically viable and environmentally sound energy supply is one of the great challenges of the 21st century."
- In 2011, German government initiated a radical change energy policy taking over the term "Energiewende"
- > The long-term vision the age of renewables to be achieved in 2050

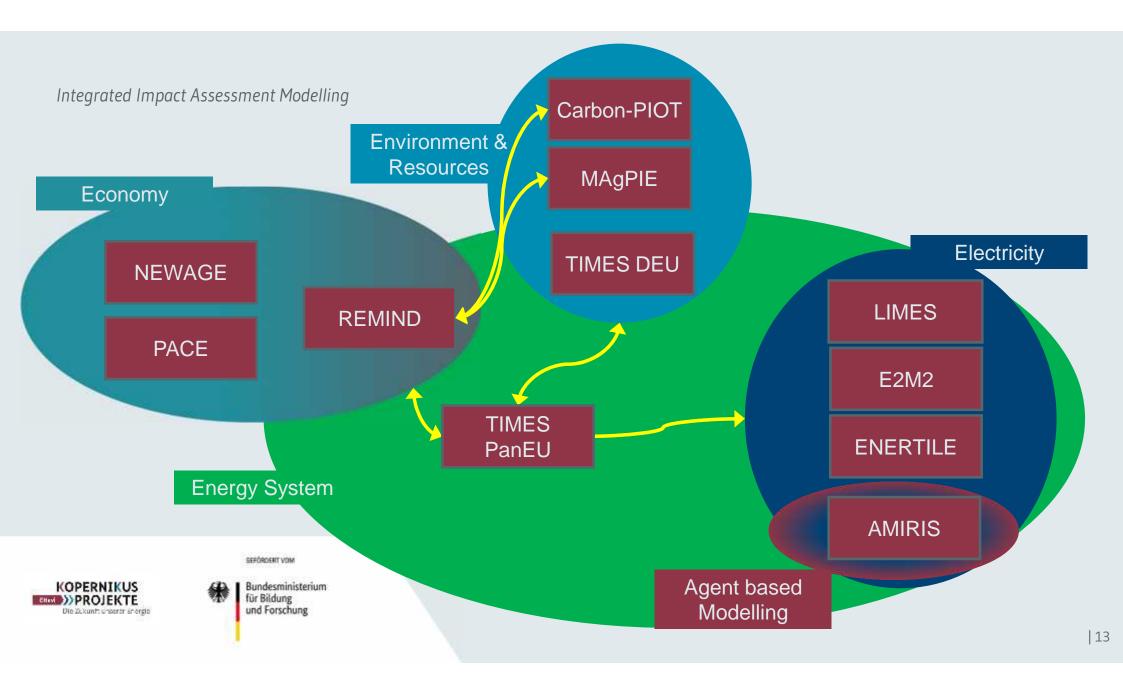
Energy transition describes a set of policies and practices to phase out the use of fossil fuels and nuclear energy for electricity generation, heat and mobility and to rely more on renewable energy while improving energy efficiency.

IER Universität Stuttgart

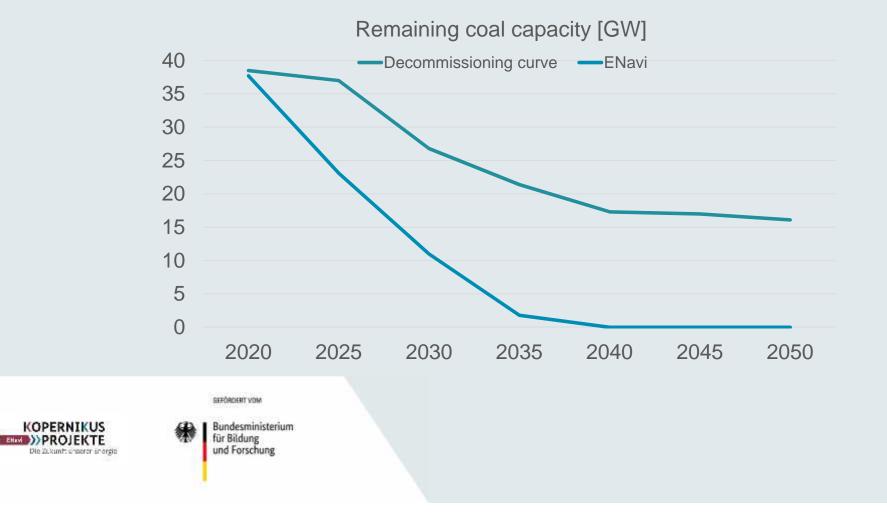

Climate targets & Coal commission

Germany's climate targets

Year	2020	2030	2040	2050
Red. ag.	40%	55%	70%	80% to
1990		(61%*)		95%


*Energy industry (Electricity, District heating, Refineries etc.)

Coal commission


- Measures to achieve the 2030 targets
- Coal phase-out schedule
- Accompanying measures

SCENARIO ANALYSIS

	Measure	Bas e scenario (BEZUG)	Policy Packages			
Orientation			Phase- out (KAS)			
Regulatory Market based	Regulatory mandatory coal phase-out with a specific phase-out schedule (KAS)	No	Yes			
	Expansion of renewable energies with tradable renewable energies quotas (EE)					
	Cessation of certificates in the European ETS (Emissions Trading System) (ZS)					
	Implementation of a CO ₂ floor price in the ETS for installations in the German energy industry (COP)					
KOPERNIKUS Etter >>> PROJEKTE Die Sckunt: urberde Energie	Bundesministerium für Bildung und Forschung					

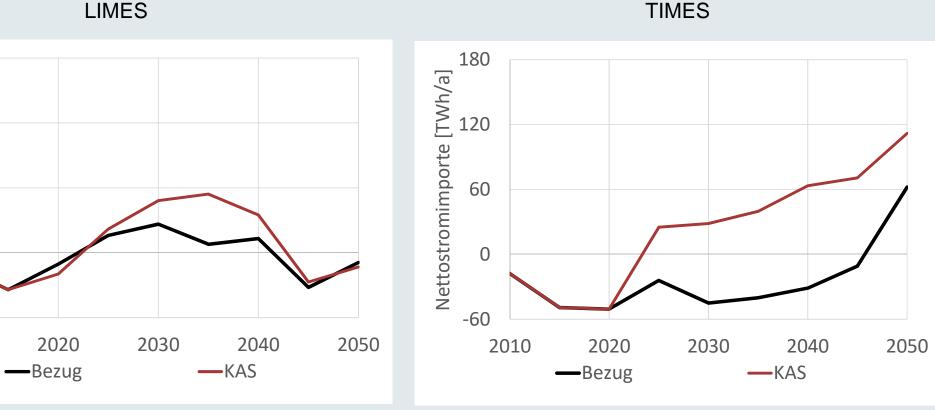
REGULATORY MANDATORY COAL PHASE-OUT SCENARIO (KAS)

ELECTRICITY TRADE BALANCE

LIMES

180

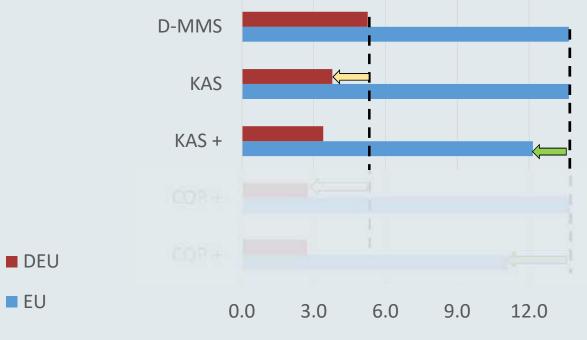
120


60

0

-60

2010


Nettostromimporte [TWh/a]

BEFÖRDERT VOM Bundesministerium KOPERNIKUS für Bildung und Forschung Die Zukunft unseren änlergie

> Coal phase-out will lead to higher electricity imports

EMISSION REDUCTION – THE EUROPEAN DIMENSION

cumulated emissions ELEC 2020-2050 [Gt CO2]

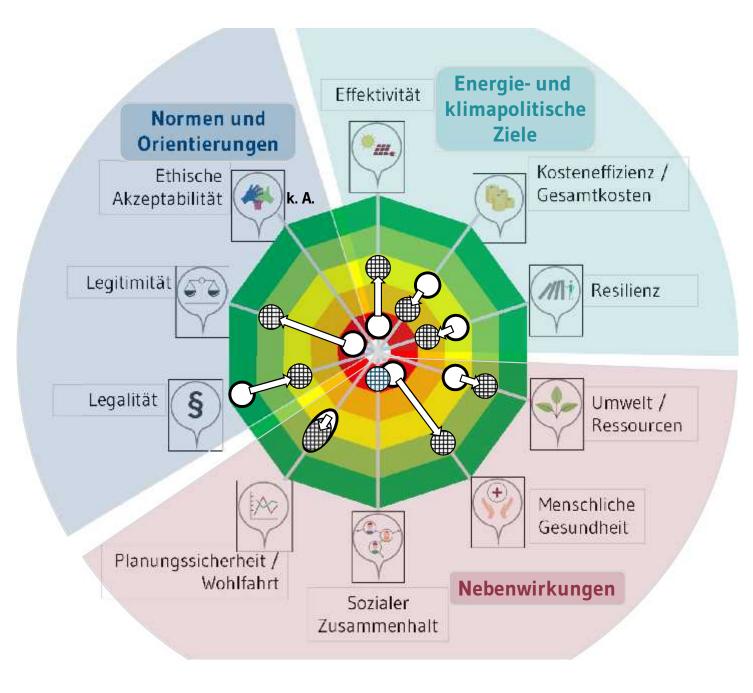
- XAS reduces cumulated emissions of the German electricity sector by 1/3, COP by 50%
- For the impact on European emissions, the cessation of certificates is crucial otherwise most of the German emission reductions will be lost (Water bed effect)

BEFÖRDERT VOM

Bundesministerium für Bildung und Forschung

BASE SCENARIO () AND "KAS"-SCENARIO ()

Trade-offs


> Effectivity

national: increasing European: without change

> Environment

Air pollution control: improving Water use: decreasing Land use: increasing

- > Health: improving
- > Resilience: declining
- > Cost-efficiency: declining

WHAT ENERGY SYSTEM MODELS CAN TELL US ABOUT A LOW CARBON ECONOMY?

Orientation Knowledge

> Innovative Technologies

> Energy Carriers

> System Knowledge ?

GEFÖRDERT VOM

Bundesministerium für Bildung und Forschung

WHAT ENERGY SYSTEM MODELS CAN TELL US ABOUT A LOW CARBON ECONOMY?

Orientation Knowledge

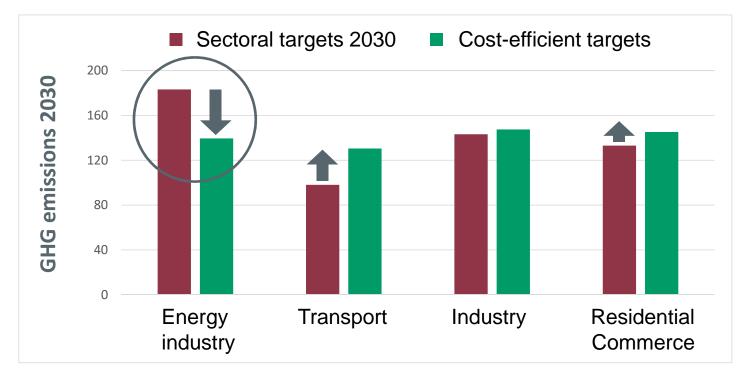
- > Innovative Technologies
- > Energy Carriers
- > System Knowledge
 - > Side-effects
 - > Trade-offs

Bundesministerium für Bildung und Forschung

BEFÖRDERT VOM

WHAT ENERGY SYSTEM MODELS CAN TELL US ABOUT A LOW CARBON ECONOMY?

Orientation Knowledge


- > Innovative Technologies
- > Energy Carriers
- > System Knowledge
 - > Side-effects
 - > Trade-offs
- > Transformation Knowledge ?

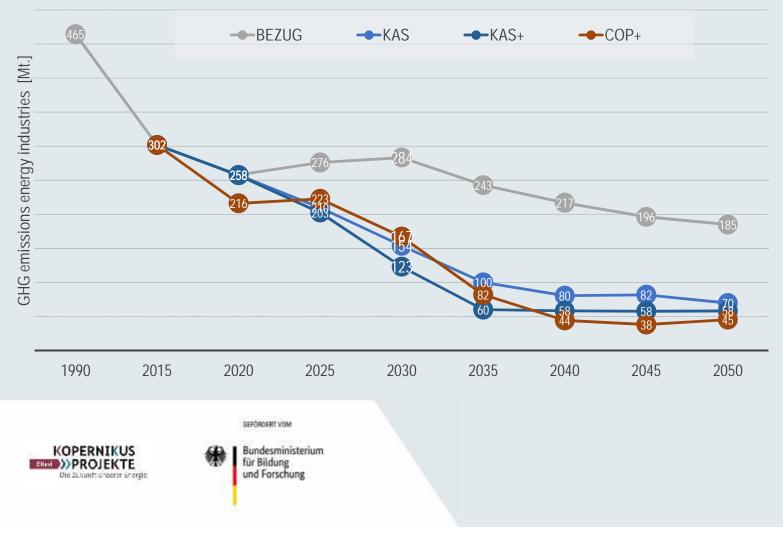
BEFÖRDERT VOM

Bundesministerium für Bildung und Forschung

Effort Sharing: 2030 target for energy industry should be more ambitious, if GHG emission reduction in Germany should be achieved in a cost-efficient way

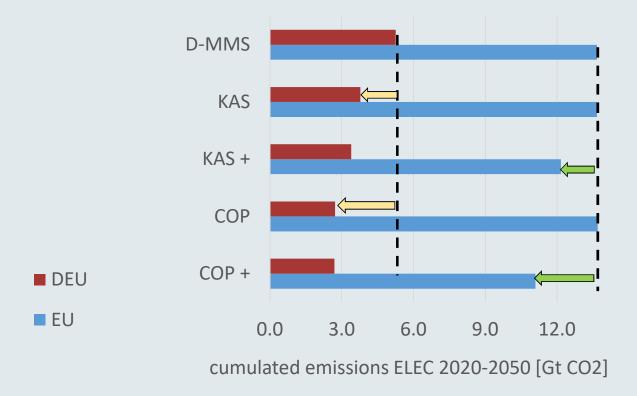
Reason: Mitigation costs in other sectors are higher

Bundesministerium für Bildung und Forschung


CETÖRDERT VOM

SCENARIO ANALYSIS

	Measure	Base scenario (BEZUG)	Policy Packages			
Orientation			Phase- out (KAS)	Phase- out + (KAS+)	CO ₂ Price + (COP+)	CO ₂ Price (COP)
Regulatory	Regulatory mandatory coal phase-out with a specific phase-out schedule (KAS)	No	Yes	Yes	No	No
Market based	Expansion of renewable energies with tradable renewable energies quotas (EE)	No	No	Yes	Yes	No
	Cessation of certificates in the European ETS (Emissions Trading System) (ZS)	No	No	Yes	Yes	No
	Implementation of a CO ₂ floor price in the ETS for installations in the German energy industry (COP)	No	No	No	Yes	Yes


KOPERNIKUS EHINT >>> PROJEKTE Die 20. kunft unserer snergie Bundesministerium für Bildung und Forschung

GHG EMISSIONS ENERGY INDUSTRY IN GERMANY

- > KAS results in 154 Mt GHG emissions in 2030
 → Sectoral target (183 Mt) will be achieved
- > In 2050 the GHG emissions of energy industry in Germany will become 70 Mt
 → Sectoral target (31 Mt) will not be reached.

EMISSION REDUCTION – THE EUROPEAN DIMENSION

- XAS reduces cumulated emissions of the German electricity sector by 1/3, COP by 50%
- For the impact on European emissions, the cessation of certificates is crucial otherwise most of the German emission reductions will be lost (Water bed effect)
- CO2 floor price (COP) shows a higher effectivity

BEFORDERT VOM

Bundesministerium für Bildung und Forschung

25

WHAT ENERGY SYSTEM MODELS CAN TELL US ABOUT A LOW CARBON ECONOMY?

Orientation Knowledge

- > Innovative Technologies
- > Energy Carriers
- > System Knowledge
 - > Side-effects
 - > Trade-offs
- > Transformation Knowledge ?

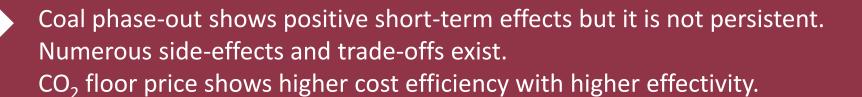
BEFÖRDERT VOM

Bundesministerium für Bildung und Forschung

WHAT ENERGY SYSTEM MODELS CAN TELL US ABOUT A LOW CARBON ECONOMY?

Orientation Knowledge

- Innovative Technologies
- > Energy Carriers
- > System Knowledge
 - > Side-effects
 - > Trade-offs
- > Transformation Knowledge
 - > Effort Sharing
 - > Right Timing
 - > Policy Packages


Bundesministerium für Bildung und Forschung

BEFÖRDERT VOM

CONCLUSION

Regulatory mandatory coal phase-out in Germany results in:

- > Rebound effects in electricity generation
 - Increased use of existing coal power plants (short-term)
 - Substitution by natural gas
 - > Natural gas is used for district heating generation
- > Higher electricity imports
- > Transfer of emission levels to other European countries (water bed effect)

- Extensions of the TIMES-GEECO model / scenario calculations
- Cellular (distributed) systems and feedback on overall system
 - e.g. Hospital / Industrial area / Gated community / University campus
 - > How to supply the energy demand with minimal import dependency?
 - > Focus on: solar energy/other renewables, CHP, best practice technology options etc.
 - > Very high temporal resolution (shorter time horizon)
 - Impact on the regional and national energy system

Fahl

- Transfer of TIMES-GEECO to further provinces / metros in South Africa
- National applications considering regional resource availability
 - > National energy system model with sub-national regions (possibly down to municipal level)
 - > Considering available regional resources, local energy targets, socio-economics...
 - > Aligning national, provincial and local energy planning and climate protection strategies
- Green economy as double dividend for national/regional low carbon development (coal question?)
- South Africa as part of a world energy model and / or a global economic model

Thank you for your attention!

IER

Dr. Ulrich Fahl

E-Mail	uf@ier.uni-stuttgart.de			
Tel.	+49 (0) 711 685-87 830			
Fax	+49 (0) 711 685-87 873			
University of Stuttgart				
Institut of Energy Economics and Rational Energy Use				
Department Energy Economics and Social Analysis				
Hessbruehlstrasse 49a				

D-70565 Stuttgart