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Abstract: The Basel III Accord requires that banks and other Authorized Deposit-taking 

Institutions (ADIs) communicate their daily risk forecasts to the appropriate monetary 

authorities at the beginning of each trading day, using one of a range of alternative risk 

models to forecast Value-at-Risk (VaR). The risk estimates from these models are used to 

determine the daily capital charges (DCC) and associated capital costs of ADIs, depending in 

part on the number of previous violations, whereby realized losses exceed the estimated VaR. 

In this paper we define risk management in terms of choosing sensibly from a variety of risk 

models and discuss the optimal selection of the risk models. Previous approaches to model 

selection for predicting VaR proposed combining alternative risk models and ranking such 

models on the basis of average DCC, or other quantiles of its distribution. These methods are 

based on the first moment, or specific quantiles of the DCC distribution, and supported by 

restrictive evaluation functions. In this paper, we consider robust uniform rankings of models 

over large classes of loss functions that may reflect different weights and concerns over 

different intervals of the distribution of losses and DCC. The uniform rankings are based on 

recently developed statistical tests of stochastic dominance (SD). The SD tests are illustrated 

using the prices and returns of VIX futures. The empirical findings show that the tests of SD 

can rank different pairs of models to a statistical degree of confidence, and that the alternative 

(recentered) SD tests are in general agreement. 
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optimizing strategy, Basel III Accord, VIX futures, global financial crisis. 
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1.  Introduction 

 

The Basel III Accord requires that banks and other Authorized Deposit-taking Institutions 

(ADIs) communicate their daily risk forecasts to the appropriate monetary authorities at the 

beginning of each trading day, using one one of a range of alternative financial risk models to 

forecast Value-at-Risk (VaR). The risk estimates from these models are used to determine the 

daily capital charges (DCC) and associated capital costs of ADIs, depending in part on the 

number of previous violations, whereby realized losses exceed the estimated VaR (for further 

details see, for example, Chang et al. (2011)). 

 

In 1993 the Chicago Board Options Exchange (CBOE) introduced a volatility index, VIX 

(Whaley, 1993), which was originally designed to measure the market expectation of 30-day 

volatility implied by at-the-money S&P100 option prices. In 2003, together with Goldman 

Sachs, CBOE updated VIX to reflect a new way of measuring expected volatility, one that 

continues to be widely used by financial theorists.  

 

The new VIX is based on the S&P500 Index, and estimates expected volatility by averaging 

the weighted prices of S&P500 puts and calls over a wide range of strike prices. Although 

many market participants considered the index to be a good predictor of short term volatility, 

namely daily or intraday, it took several years for the market to introduce volatility products, 

starting with over-the-counter products, such as variance swaps and other financial 

derivatives. The first exchange-traded product, VIX futures, was introduced in March 2004, 

and was followed by VIX options in February 2006. Both of these volatility derivatives are 

based on the VIX index as the underlying asset. 

 

McAleer et al. (2013a, b, c) analyse, from a practical perspective, how the new market risk 

management strategies performed during the 2008-09 global financial crisis (GFC), and 

evaluate how the GFC affected the best risk management practices. These papers define risk 

management in terms of choosing appropriate financial targets, from a variety of financial risk 



models, and discuss the selection of optimal risk models. They forecast VaR using ten 

univariate conditional volatility models with different error distributions. Additionally, they 

analyze twelve new strategies based on combinations of the previous standard univariate 

model forecasts of VaR, namely: Infinum (0th percentile), Supremum (100th percentile), 

Average, Median and nine additional strategies based on the 10th through to the 90th 

percentiles. Such an approach is intended to select a robust VaR forecast, irrespective of the 

time period, that provides reasonable daily capital charges and number of violation penalties 

under the Basel II Accord. They found that the Median is a GFC-robust strategy, in the sense 

that maintaining the same risk management strategy before, during and after the GFC leads to 

comparatively low daily capital charges and violation penalties under the Basel II Accord. 

Chang et al. (2011) apply a similar methodology for choosing the best strategy to forecast 

VaR for a portfolio based on VIX futures. 

 

These prior methods focus on the first moment, or certain quantiles of the DCC distribution. 

Alternative criteria may consider mean-variance trade-offs, as in substantial areas of financial 

research, or general evaluation criteria that incorporate higher moments and quantiles of the 

underlying probability distributions. These will all provide appropriate “cardinal” and 

“complete” rankings of models and strategies, based on subjective valuations of different 

aspects, or parts of the DCC distribution. For instance, were DCC to be a Gaussian variate, 

mean-variance assessments would be strongly justified. This is not likely, however, and 

consensus on appropriate weighting and assessment functionals of non-Gaussian distributions 

has been elusive. It is of some importance to point out, that mean-variance type assessments 

are justified by a joint consideration of quadratic risk function, as well as the full 

characterization of the Gaussian case by the second moment. Absent a Gaussian setting, 

justification of a quadratic loss function itself becomes questionable. Why would we not be 

concerned with higher moments (when they exist), and often asymmetrical tail area behavior, 

especially when tail functions such as VaR are of interest?  

 

A complementary robust alternative, is to seek weak uniform rankings over entire classes of 

evaluation functions, and based on nonparametric distributions of DCC. In this respect, 

Stochastic Dominance (SD) tests have been developed to test for statistically significant 

rankings of prospects. Assuming F and G are the distribution functions of DCC produced by 

model 1 and model 2, respectively, model 1 first order SD model 2, over the support of DCC 



value dcc, iff F dcc( ) £G dcc( ) , with strict inequality over some values of DCC. This means 

that the model that produces G is dominant over all merely increasing evaluation functions 

since, at all quantiles, the probability that capital charges are smaller under G is greater than 

under F. In particular, the distribution F will have a higher median DCC than G. Similarly, 

each and every (quantile) percentile of the F distribution will be at a higher DCC level than 

the corresponding percentile of the G distribution. Consequently, model 2 will be preferred to 

model 1, to a statistical degree of confidence, on the basis of lower capital charges. Higher-

order SD rankings reference further subclasses of evaluation functions, those that are 

increasing and concave, reflecting increasing risk aversion (see Sections 4-5 below). 

 

In this paper we examine several standard models for forecasting VaRs, including GARCH, 

EGARCH, and, GJR, paired with Gaussian and Student-t distributions. The results show that 

the Gaussian distribution is preferred to Student-t in forecasting DCC. With the Student-t 

distribution, the EGARCH model provides a greater likelihood of higher DCC in comparison 

with GARCH and GJR. Using the Gaussian distribution to forecast DCC does not lead to 

either first or second order stochastic dominance. In respect of the CDF and integrated CDF, 

the basis of first and Second Order Stochastic dominance testing, it seems that the higher 

expected DCC of GJR or GARCH may be compensated by lower risk compared with 

EGARCH.  

 

The remainder of the paper is organized as follows. In Section 2 the definition, notation and 

properties of stochastic dominance are presented. Section 3 describes briefly the Basel II 

Accord for computing daily capital charges.  Section 4 presents alternative GARCH models to 

produce daily capital charges. Section 5 introduces the data, describes the block bootstrapping 

method to simulate time series, and illustrates the application of stochastic dominance to 

enhance financial risk management strategies of banks. Section 6 presents the main results. 

Section 7 gives some concluding comments. 

 

2.  Forecasting Value-at-Risk and Daily Capital Charges   

 

In this section, which follows McAleer et al. (2013a, b, c) closely, we introduce the 

calculation of daily capital charges (DCC) as a basic criterion for choosing between risk 

models. The Basel II Accord stipulates that daily capital charges (DCC) must be set at the 



higher of the previous day’s VaR or the average VaR over the last 60 business days, 

multiplied by a factor (3+k) for a violation penalty, where a violation occurs when the actual 

negative returns exceed the VaR forecast negative returns for a given day: 

 

   
______

60t t-1DCC = sup - 3+ k VaR ,  - VaR  (1) 

 

where  

 

DCCt = daily capital charges, 

 

tttt zYVaR ̂ˆ  , the Value-at-Risk for day t, 

 

60

______

VaR  = mean VaR over the previous 60 working days, 

 

tŶ = estimated return at time t, 

 

tz = 1% critical value of the distribution of returns at time t,  

 

t̂ = estimated risk (or square root of volatility) at time t, 

 

0 k 1    is the Basel II violation penalty (see Table 1). 

 

 

[Insert Table 1 here] 

 

It is well known that the formula given in equation (1) is contained in the 1995 amendment to 

Basel I, while Table 1 appears for the first time in the Basel II Accord in 2004. The 

multiplication factor (or penalty), k, depends on the central authority’s assessment of the 

ADI’s risk management practices and the results of a simple backtest. It is determined by the 

number of times actual losses exceed a particular day’s VaR forecast (see Basel Committee 

on Banking Supervision (1As stated in a number of previous papers (see, for example, 

McAleer et al. (2013a, b, c)), the minimum multiplication factor of 3 is intended to 

compensate for various errors that can arise in model implementation, such as simplifying 

assumptions, analytical approximations, small sample biases and numerical errors that tend to 

reduce the true risk coverage of the model (see Stahl (1997)). Increases in the multiplication 

factor are designed to increase the confidence level that is implied by the observed number of 

violations at the 99% confidence level, as required by regulators (for a detailed discussion of 



VaR, as well as exogenous and endogenous violations, see McAleer (2009) and McAleer et 

al. (2010)). 

 

As has been stated elsewhere, in calculating the number of violations, ADIs are required to 

compare the forecasts of VaR with realised profit and loss figures for the previous 250 trading 

days. In 1995, the 1988 Basel Accord (Basel Committee on Banking Supervision (1988)) was 

amended to allow ADIs to use internal models to determine their VaR thresholds (Basel 

Committee on Banking Supervision (1995)). However, ADIs that propose using internal 

models are required to demonstrate that their models are sound. Movement from the green 

zone to the red zone arises through an excessive number of violations. Although this will lead 

to a higher value of k, and hence a higher penalty, violations will also tend to be associated 

with lower daily capital charges. It should be noted that the number of violations in a given 

period is an important, though not the only, guide for regulators to approve a given VaR 

model.  

 

VaR refers to the lower bound of a confidence interval for a (conditional) mean, that is, a 

“worst case scenario on a typical day”. If interest lies in modelling the random variable, 
 
Y

t
, it 

could be decomposed as follows: 

 

 1( | )t t t tY E Y F   . (2) 

 

This decomposition states that  
 
Y

t  
comprises a predictable component,  

E(Y
t
| F

t-1
)
, which is 

the conditional mean, and a random component, t . The variability of 
 
Y

t
, and hence its 

distribution, is determined by the variability of t . If it is assumed that 
 
e

t
 follows a 

conditional distribution, ),(~ 2

ttt D  , where 
 
m

t
 and 

 
s

t
 are the time-varying conditional 

mean and standard deviation of 
 
e

t
, respectively, these can be estimated using a variety of 

parametric, semi-parametric or non-parametric methods.  

 

The VaR threshold for 
 
Y

t
 can be calculated as: 

  

 1( | )t t t tVaR E Y F   , (3) 

 



where a  is the critical value from the distribution of 
 
e

t
 to obtain the appropriate confidence 

level. It is possible for 
 
s

t
 to be replaced by alternative estimates of the conditional standard 

deviation in order to obtain an appropriate VaR (for useful reviews of theoretical results for 

conditional volatility models, see Li et al. (2002) and McAleer (2005), where several 

univariate and multivariate, conditional, stochastic and realized volatility models are 

discussed).  

 

Some recent empirical studies (see, for example, Berkowitz and O’Brien (2001), Gizycki and 

Hereford (1998), and Pérignon et al. (2008)) have indicated that financial institutions tend to 

overestimate their market risks in disclosures to the appropriate regulatory authorities, which 

can imply a costly restriction to the banks trading activity. ADIs may prefer to report high 

VaR numbers to avoid the possibility of regulatory intrusion. This conservative risk reporting 

suggests that efficiency gains may be feasible. In particular, as ADIs have effective tools for 

the measurement of market risk, while satisfying the qualitative requirements, ADIs could 

conceivably reduce daily capital charges by implementing a context-dependent market risk 

disclosure policy. McAleer (2009) and McAleer et al. (2010) discuss alternative approaches to 

optimize VaR and daily capital charges. 

 

The next section describes several volatility models that are widely used to forecast the 1-day 

ahead conditional variances and VaR thresholds.  

 

3. Models for Forecasting VaR 

 

ADIs can use internal models to determine their VaR thresholds. There are alternative time 

series models for estimating conditional volatility. In what follows, we present several well-

known conditional volatility models that can be used to evaluate strategic market risk 

disclosure, namely GARCH, GJR and EGARCH, with Gaussian and Student-t distributions. 

These univariate models are chosen as they are widely used in the literature. For an extensive 

discussion of the theoretical properties of several of these models see, for example, Ling and 

McAleer (2002a, 2002b, 2003a), McAleer (2005), and Caporin and McAleer (2012).  

 

3.1 GARCH 

 



For a wide range of financial data series, time-varying conditional variances can be explained 

empirically through the autoregressive conditional heteroskedasticity (ARCH) model, which 

was proposed by Engle (1982). When the time-varying conditional variance has both 

autoregressive and moving average components, this leads to the generalized ARCH(p,q), or 

GARCH(p,q), model of Bollerslev (1986). It is very common in practice to impose the widely 

estimated GARCH(1,1) specification in advance.  

 

Consider the stationary AR(1)-GARCH(1,1) model for daily returns, 
ty :   

 

 t 1 2 t-1 t 2y =φ +φ y +ε , φ <1  (4) 

 

for nt ,...,1= , where the shocks to returns are given by:  

 

 
t t t t

2

t t-1 t-1

ε = η h , η ~ iid(0,1)

h =ω+αε + βh ,
 (5) 

 

and 0, 0, 0      are sufficient conditions to ensure that the conditional variance 0>th

. The stationary AR(1)-GARCH(1,1) model can be modified to incorporate a non-stationary 

ARMA(p,q) conditional mean and a stationary GARCH(r,s) conditional variance, as in Ling 

and McAleer (2003b). 

 

3.2 EGARCH 

 

An alternative model to capture asymmetric behaviour in the conditional variance is the 

Exponential GARCH, or EGARCH(1,1), model of Nelson (1991), namely:  

 

 t-1 t-1
t t-1

t-1 t-1

ε ε
logh =ω+α +γ + βlogh , | β |<1

h h
 (6) 

 

where the parameters ,  b  and g  have different interpretations from those in the 

GARCH(1,1) and GJR(1,1) models.  

 



EGARCH captures asymmetries differently from GJR. The parameters   and g  in 

EGARCH(1,1) represent the magnitude (or size) and sign effects of the standardized 

residuals, respectively, on the conditional variance, whereas   and    represent the 

effects of positive and negative shocks, respectively, on the conditional variance in GJR(1,1). 

Unlike GJR, EGARCH can accommodate leverage, depending on the restrictions imposed on 

the size and sign parameters, though leverage is not guaranteed. 

 

As noted in McAleer et al. (2007), there are some important differences between EGARCH 

and the previous two models, as follows: (i) EGARCH is a model of the logarithm of the 

conditional variance, which implies that no restrictions on the parameters are required to 

ensure 0th ; (ii) moment conditions are required for the GARCH and GJR models as they 

are dependent on lagged unconditional shocks, whereas EGARCH does not require moment 

conditions to be established as it depends on lagged conditional shocks (or standardized 

residuals); (iii) Shephard (1996) observed that 1||   is likely to be a sufficient condition 

for consistency of QMLE for EGARCH(1,1) (see also the caveats given in McAleer and 

Hafner (2014)); (iv) as the standardized residuals appear in equation(6), 1||   would seem 

to be a sufficient condition for the existence of moments; and (v) in addition to being a 

sufficient condition for consistency, 1||   is also likely to be sufficient for asymptotic 

normality of the QMLE of EGARCH(1,1).   

 

3.3 GJR 

 

In the symmetric GARCH model, the effects of positive shocks (or upward movements in 

daily returns) on the conditional variance, th , are assumed to be the same as the effect of 

negative shocks (or downward movements in daily returns) of equal magnitude. In order to 

accommodate asymmetric behaviour, Glosten, Jagannathan and Runkle (1992) proposed a 

model (hereafter GJR), for which GJR(1,1) is defined as follows:  

 

 2

t t-1 t-1 t-1h =ω+(α+γI(η ))ε + βh ,  (7) 

 

where 0,0,0,0 ³³+³> bgaaw  are sufficient conditions for ,0>th  and )( tI h  is an 

indicator variable defined by: 

 



  
1, 0

0, 0

t

t

t

I






 


 (8) 

 

 as t  has the same sign as t . The indicator variable differentiates between positive and 

negative shocks, so that asymmetric effects in the data are captured by the coefficient g . For 

financial data, it is expected that 0  because negative shocks have a greater impact on risk 

than do positive shocks of similar magnitude. The asymmetric effect, ,  measures the 

contribution of shocks to both short run persistence, 2  , and to long run persistence, 

2    .  

 

Although GJR permits asymmetric effects of positive and negative shocks of equal magnitude 

on conditional volatility, the special case of leverage, whereby negative shocks increase 

volatility while positive shocks decrease volatility (see Black (1976) for an argument using 

the debt/equity ratio), cannot be accommodated, in practice (for further details on asymmetry 

versus leverage in the GJR model, see Caporin and McAleer (2012)). 

 

The three conditional volatility models given above are estimated under the following 

distributional assumptions on the conditional shocks: (1) Gaussian and (2) Student-t, with 

estimated degrees of freedom. As the models that incorporate the t distributed errors are 

estimated by QMLE, the resulting estimators are consistent and asymptotically normal, so 

they can be used for estimation, inference and forecasting. 

 

4.  Stochastic Dominance1  

The objective is to evaluate each of the alternative conditional volatility models with respect 

to the DCC function. Observe that each model will yield different values of DCC because 

they will produce different VaR forecasts. The stochastic dominance concept is applied to 

determine which model should be used to produce the lowest DCC for a given investment, 

while not taking into account the number of violations since the primary purpose of the 

analysis is to assist risk managers in choosing among alternative models. Below we briefly 

describe the SD tests that are used in this paper.  

4.1 Definitions and Hypothesis Formulation 

 

                                                 
1 This section closely follows Donald and Hsu (2013),  and Linton, Maasoumi, and Whang (2007).  



Let X and Y be two random variables with cumulative distribution functions (CDF) FX and FY 

, respectively. For first order stochastic dominance (SD1), Y SD1 X, if FY (z) ≤ FX(z) for all  

z∈ R. Let WU(F) denote an evaluation function of the form WU(F) =∫U(z) dF(z), where F is the 

distribution of an underlying variable, and U is any “utility” function. SD1 is defined over 

monotonically increasing utility functions, that is, WU(FY ) ≥ WU(FX) for all U(z) such that 

U′(z) ≥ 0.  

 

The technical assumptions for the underlying statistical theory include the following: 

 

Assumption 4.1: 

1.   [0,  ]   .Z z where z    

2. FX and FY are continuous functions on Z such that FX (z) = FY (z) = 0 iff z = 0,and FX (z) = 

FY (z) = 1 iff    .z z  

(see Linton, Maasumi and Whang, (2005) (hereafter LMW), Linton, Song and Whang (2010) 

and Donald and Hsu (2013) for further details).  

 

In order to test if Y SD1 X, Donald and Hsu (2013) formulate their hypotheses as: 

    0  :    for all  ,Y XH F z F z z Z   (9) 

 H
1
:  F

Y
 z( )  >  F

X  
z( )  for some z Î  Z.    (10) 

This is different from LMW, who provide a simultaneous test of either Y SD1 X or X SD1 Y.  

 

Assumption 4.2: 

1. 
1{ }  N

i iX 
 and 

1{ }  M

i iY 
 are samples from distributions with CDF’s FX and FY , respectively. 

Some authors deal with independent samples and observations. LMW allow dependent time 

series and possibly dependent X and Y. 

2. M is a function of N satisfying that M(N) → ∞ and N/(N +M(N)) → λ ~ (0, 1) when N → ∞. 

The CDF’s FX and FY are estimated by empirical CDFs: 

, ,
1 1

1 1ˆ ˆ( )   1(   ),  ( )   1(   ),
N N

X N i Y M i
i i

F z X z F z Y z
N M 

      

where 1(·) denotes the indicator function. The Kolmogorov-Smirnov test statistic is given by: 

 

, ,
ˆ ˆ ˆsup ( ( )  ( ))N Y N X M

z Z

NM
S F z F z

N M 

 


. 



 

Let 
2
 h denote a zero mean Gaussian process with covariance kernel equal to 

2 2 h H , 

where H2 denotes the collection of all covariance kernels on Z × Z. For FX and FY satisfying 

Assumption 4.1, and let ,

2  X Yh  denote the covariance kernel on Z × Z such that: 

 ,

2 1 2 1 2 1 2 1 2( ,  )   · ( )(1  ( ))  (1  ) · ( )(1  ( ))  for    X Y

X X Y Yh z z F z F z F z F z z z       (11) 

 

with λ defined in Assumption 4.2. Then, 

 
2, , ,

ˆ ˆ/ ( ) (  ( )   ( ) (  ( )   ( )))  Y M X N Y X h X YNM N M F z F z F z F z      

 (see, for example, Linton et al (2005), or Donald and Hsu (2013)). A typical limiting result 

is: 

 

1. Under H0 , 
2 ,

ˆ sup  
D

N z Z h X YS    

2. Under H1, ˆ  
D

NS   

 

Several approaches for resampling and subsampling implementation of SD tests have been 

proposed. Some methods simulate the limiting Guassian process, in the spirit of Barret and 

Donald (2003), using the Multiplier method, bootstrap with separate samples, or bootstrap 

with combined samples.  Simulated processes weakly converge to the same process as the 

limit process, conditional on the sample path with probability approaching 1.  

 

4.2  Re-centering Functions. 

  

These simulation methods do not work when the data are weakly dependent, as for time series 

samples in this paper. In these cases one has to appeal to either the subsampling technique of 

Linton, Maasoumi and Whang (2005), or a variant of the block bootstrap. Donald and Hsu 

(2013) provide a comparative examination of these alternatives.  

 

 

Donald and Hsu (2013) and LMW (2005) propose re-centering methods introduced by 

Hansen (2005) to construct critical values for the Kolmogorov-Smirnov type tests. This 

approach provides a test with improved size and power properties compared with the 

unadjusted test mounted at the composite boundary of the null and alternative spaces, the so 



called Least Favorable Case (LFC). The re-centering function proposed by Donald and Hsu 

(2013) is conditioned to apply on the null space: 

 

             , , , ,
ˆ ˆˆ     · 1       .N Y N X N Y N X Nz F z F z N F z F z aN      

 

For α < 1/2, let 

  

 

where D̂bb

N
z( )  is the “S” statistic computed with the b-th resample/subsample block. If the 

decision rule is to reject the null hypothesis, H0 : FY (z) ≤ FX(z) for all z ~ Z when  Ŝ
N≻

≻ ĉbb

h ,N
, 

then the corresponding test has the same size properties as in the independent random samples 

case.  

 

4.3  More on Weakly Dependent Data 

 

Let   1{ ,  }  N

i i iX Y  be a strictly stationary time series sequence with joint distribution function 

FXY on Z2 and marginal CDF’s FX and FY , respectively. Suppose that Assumption 1 of LMW 

holds. Then under the null hypothesis that H0: FY (z) ≤ FX(z) for all z ~ Z,  
2

ˆ sup
D

N z Z hS z  , 

where 

 
     

   

2 1 2 1 1 1 1

1

1 2 2 2 2

1
,    lim  (1(   )  1(   )     ,  

1
 (1(   )  1(   )     

N

N i i Y X

i

N

i i i Y X

h z z Cov Y z X z F z F z
N

Y z X z F z F z
N








     



    


(12) 

  

 

which is the long-run covariance kernel function. In order to simulate 
2h , Donald and Hsu 

(2013) propose the blockwise bootstrap as in LMW (2005) because the multiplier method and 

the bootstrap methods do not account for the weak dependence of the data. Then under the 

same conditions as in LMW, we have 
2

(·) (·)
p

bb

N hN D   where h2 is defined in (12).  

We adopt the Donald and Hsu recentering procedure and critical values as they are 

less conservative under the null and at least as powerful under the alternative. To appreciate 



the role played by the choice of critical values here, consider the critical value in either of the 

multiplier method (mp), bootstrap with separate samples (bs), or bootstrap with combined 

samples (bc), given below for k = mp, bs and bc is as follows: 

 

 ˆˆ sup |  sup ( )   1  . 
 

k u k

N z Z N

NM
q q P D z q

N M


   
     

   

 (13) 

 

 

The critical value ˆk

Nq  is bounded away from zero in probability. Since η can be chosen to be 

arbitrarily small, we can assume that h ≻ q̂
N

k , which implies that  

given that . Thus, Donald and Hsu (2013) are able to show that, given Assumptions 

4.1, 4.2, and α < ½:  

,
ˆ ˆˆ ˆ(   )  (   )k k

N NP S q P S c    , for k = mp, bs and bc. 

This would imply that the power and size of these tests are never smaller than those of BD 

(2003). 

 

4.4  Linton, Maasoumi and Whang's Subsampling Test 

 

LMW (2005) estimate the critical value by the subsampling method proposed in Politis and 

Romano (1994). Donald and Hsu (2013) introduce LMW’s test with a modification that 

allows for different sample sizes. For s ≥ 1, let Xs denote the collection of all of the subsets of 

size s of {X1, ...,XN}: 

 

  
1 1 {  ,  . . . , } |{ ,  . . . ,  }  {1,  . . . , } .

ss r r sX X X r r N   

 

A random draw denoted by 
1{ ,  . . . , }b b

sX X from Xs would be a random sample of size s 

without replacement from the original data. Let ,
ˆ

b

X sF  be the empirical CDF based on the 

random draw, 
1{ ,  . . . , }b b

sX X . Define ,
ˆ

b

Y sF  similarly. Let sN and sM denote the subsampling 

sizes for the X and Y samples, respectively. The subsampling critical value ˆS

Nc  is given by 
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s s
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Assume that: 

 

1. sN → ∞, sM → ∞, sN/N → 0 and sM/M → 0 as N → ∞. 

2. sN/(sN + sM) → λ, where λ is defined in Assumption 2.2. 

 

The first part is standard for the subsampling method. The second part requires that the 

subsample sizes from the two samples grow at the same rate and that the limit of the ratio of 

the subsample sizes be the same as that of the original samples. This condition is important if, 

for example, sN/(sN + sM) → λs ≠ λ, so that, under the null hypothesis: 

 

 
* ; *

ˆ ˆ sup ( ( )  ( ))  sup  ( ) 1  ( ) 
  M N

D
b bN M

z Z s Y s z Z s G s F

N M

s s
G z F z B G z B F z

s s
     


 (14) 

   

 

conditional on the sample(s) with probability one (denoted as D→ p). When λs ≠ λ, in the 

limit, the left-hand side of (14) may not be a good approximation to the limiting null 

distribution of the original test statistic.  

 

The limiting distribution theory in LMW (2005) covers weakly stationary, dependent 

samples, with certain mixing conditions, such as in our application. In addition, they allow for 

the prospects that are ranked to be estimated functions, rather than original series described 

above. If the estimators involved in these estimated functions permit certain expansions, as 

described in LMW (2005), Assumption 2, Section 3.1, the limiting distribution theory is 

preserved with re-centering. The DCC functions being ranked here are certainly estimated 

functions of the data. The conditional means and variance estimators in the VaR forecasts are 

generally consistent, and admit the type of expansions assumed in LMW (2005). However, 

DCC is a maximal function of two functions of past VaRs and, to the extent that this may lead 

to discontinuities, or non-smoothness, in the estimated empirical CDFs, the accuracy of the 

underlying limiting distributions may be affected. It is known that the subsampling method is 

valid for many non-standard cases of this kind, but the same may not be true of bootstrap 

methods. A more careful technical examination of this issue is beyond the scope of this paper.     



 

5. Data and Implementation of Tests 

 

5.1. Data description 

 

The data used for estimation and forecasting are closing daily prices (settlement prices) for 

the 30-day maturity CBOE VIX volatility index futures (ticker name VX). They were 

obtained from the Thomson Reuters-Data Stream Database for the period 26 March 2006 to 

29 November 2013 (2526 observations). The settlement price is calculated by the CBOE as 

the average of the closing bid and ask quote so as to reduce the noise due to any 

microstructure effects. The contracts are cash settled on the Wednesday 30 days prior to the 

third Friday on the calendar month immediately following the month in which the contract 

expires. The underlying asset is the VIX index that was originally introduced by Whaley 

(1993) as an index of implied volatility on the S&P100. In 2003 the new VIX based on the 

S&P500 index was introduced.  

 

VIX is a measure of the implied volatility of 30-day S&P500 options. It is independent of an 

option pricing model and is calculated from the prices of the front month and next-to-front 

month S&P500 at-the-money and out-the-money call and put options. The level of VIX 

represents a measure of the implied volatilities of the entire smile for a constant 30-day to 

maturity option chain. VIX is quoted in percentage points (for example, 30.0 VIX represents 

an implied volatility of 30.0%). In order to invest in VIX, an investor can take a position in 

VIX futures or VIX options.  

 

Although VIX represents a measure of the expected volatility of the S&P500 over the next 

30-days, the prices of VIX futures are based on the current expectation of what the expected 

30-day volatility will be at a particular time in the future (on the expiration date). Although 

the VIX futures should converge to the spot at expiration, it is possible to have significant 

disparities between the spot VIX and VIX futures prior to expiration. Figure 1 shows the daily 

VIX futures index together with the 30-day maturity VIX futures closing prices. VIX has a 

correlation (0.96) with the 30-day maturity VIX futures. VIX futures prices tend to show 

significantly lower volatility than VIX, which can be explained by the fact that VIX futures 



must be priced in a manner that reflects the mean reverting nature of VIX. For the whole 

sample, the standard deviation is 9.99 for VIX and 8.58 for VIX futures prices. 

 

[Insert Figures 1-2 here] 

 

If tP  denotes the closing prices of the VIX futures contract at time t, the returns at time t ( )tR  

are defined as: 

 

  1100*log / t t tR P P . (15) 

 

Figure 2 shows the daily VIX futures returns, and the descriptive statistics for the daily 

returns are given in Table 2. The total number of observations is 2526 so that, after computing 

the VIX futures returns, there are 2525 observations. The histogram in Table 2 includes all the 

returns observations.  

 

The returns to the VIX futures are driven by changes in expectations of implied volatility. 

Figure 3 shows the histograms for the daily returns, together with the theoretical Gaussian and 

Student-t probability density functions and a kernel density estimator. The Student-t density 

fits the returns distributions better than does its Gaussian counterpart.  

 

[Insert Table 2 and Figure 3 here] 

 

Regarding the returns volatility, several measures of volatility are available in the literature. In 

order to gain some intuition, we adopt the measure proposed in Franses and van Dijk (1999), 

who define the true volatility of returns as: 

 

   
1/2

2

1| 
  
 t t t tV R E R F , (16) 

 

where 1tF  is the information set at time t-1.  

 

Figure 4 presents Vt in equation (16) as “volatilities”. The series exhibit clustering that should 

be captured by an appropriate time series model. Until January 2007, a month before the first 

reports of subprime losses, the volatility of the series seems to be stable. The volatility 



reached an all time peak on 27 February 2007, when it climbed to 26% (the mean (median) 

for the entire sample is 2.62(1.78)), as the US equity market had its worst day in four years. 

Then it remained above historic levels, but the VIX futures volatility increases again after 

August 2008, due in large part to the worsening global credit environment, with a maximum 

again on 3 November 2008. Then the volatility remained low until the news about the 

sovereign debt crisis in the Euro zone created another spike in volatility in the first week of 

May 2010, when the VIX futures reached 35 with a high volatility in returns. Finally, at the 

end of September 2011 we observe another maximum of 42 because of the 2011 US debt 

ceiling episode.  

 

[Insert Figure 4 here] 

 

5.2. Block bootstrapping and subsampling 

 

In order to test for SD rankings between risk models using different conditional volatility 

models for forecasting VaR, we implement the Circular Block Bootstrapping (CBB) method 

developed in Politis and Romano (1992) for resampling the VIX futures through the MFE 

toolbox of Kevin Sheppard. The block bootstrap is widely used for implementing the 

bootstrap with time series data. It consists of dividing the data into blocks of observations and 

sampling the blocks randomly with replacement. 

 

In the CBB, let the data consist of observations : 1,...,iX i n , and let  1,..., 1l n and b 

denote the length and the number of blocks, respectively, such that lx b n . Let n and m be 

the initial data size and the bootstrap sample size, m n  and k the number of blocks chosen. 

CBB consists of dividing the time series into b blocks of consecutive observations denoted 

by: 

  1 1
,..., 1,...,i ili l

B X X i n
 

 
 

 

A random sample of k blocks, 1k  , * *
1 ,..., kB B  is selected with replacement from * *

1 ,..., kB B . 

Joining the k blocks with m = k×l observations, the bootstrap sample is given as: 

 

  * * * *
1 1 1
,..., ,..., ..., .l lk l

X X X X
   



The CBB procedure is based on wrapping the data around a circle and forming additional 

blocks using the “circularly defined” observations. For i n , it is defined that 1 ni
X X , 

where modni i n  and 0 nX X . The CBB method resamples overlapping and periodically 

extended blocks of length l. Notice that each Xi appears exactly l times in the collection of 

blocks and, as the CBB resamples the blocks from this collection with equal probability, each 

of the original observations X1, ..., Xn receives equal weight under the CBB. This property 

distinguishes the CBB from previous methods, such as the non-overlapping block bootstrap of 

Carlstein (1992). Note that DCC (VaR) is estimated for each drawn sample, thus generating 

the bootstrap (subsample) distribution of the test statistics.  

 

5.3. Daily Capital Charges (DCC) and evaluation framework: Stochastic Dominance 

 

The primary objective is to evaluate each of the alternative conditional volatility models with 

respect to the DCC function. Each model will imply different values of DCC as they will 

produce different VaR forecasts. The stochastic dominance concept is applied in this context 

to determine which model should be used for producing a lower DCC for a given amount 

invested. 2 The main point of the analysis is to help risk managers to choose between 

alternative models. 

 

In analysing alternative risk management strategies, McAleer et al. (2013b) forecast VaR 

using ten univariate conditional volatility models with different error distributions. 

Additionally, they analyze twelve new strategies based on combinations of the previous 

standard univariate forecasts of VaR, namely: Infimum (0th percentile), Supremum (100th 

percentile), Average, Median and nine additional strategies based on the 10th through to the 

90th percentiles. This was intended to select a robust VaR forecast, irrespective of the time 

period, that provides reasonable daily capital charges and number of violation penalties under 

the Basel Accord. They found that the Median is a GFC-robust strategy, in the sense that 

maintaining the same risk management strategy before, during and after the GFC leads to 

comparatively low daily capital charges and violation penalties under the Basel Accord. 

                                                 
2Subsequent analysis would take into account if each model not only provides lower DCCs, but also if the model satisfies the 

requirement of keeping the number of violations away from the red zone (see Table 1). Looking at Table 3 in Chang et al. 

(2011), the number of violations for all the strategies and periods analyzed in that paper remains below 5. In this paper we 

use the same asset and models, which means that all the models remain within the Basel II green zone, thereby avoiding the 

possibility of regulatory intrusion. 



Chang et al. (2011) apply this model selection criterion for choosing the best risk 

management strategy when dealing with VIX futures. 

 

For each criterion above there corresponds an implied evaluation, or weighting function, over 

the quantiles of the distribution. SD ranking may provide “uniform” evaluations based on 

large classes of loss functions, and/or distribution functions. To a statistical degree of 

confidence, SD rankings may provide for robust risk model selection and reporting. This 

method offers the advantage of always being consistent with expected utility maximization, 

while not requiring a specific loss function.  

 

As an example, consider the probability density functions of DCC from two alternative 

models 1 and 2, as shown in Figure 5. Based on an illustrative example using 1000 simulated 

observations, Figures 5 and 6 depict probability density functions, empirical CDFs and 

ICDFs, where one distribution is Chi-squared and the other is Gaussian. The empirical CDFs, 

ˆ
XF  and ˆ ,YF for any two variables, X and Y, that are used in the SD tests, are plotted in 

Figures 5-13, and are computed as follows: (i) a vector z containing all the distinct X and Y 

values is created, and is sorted in ascending order; and (ii) each point j in  ˆ ˆ
X YF F  is 

calculated as the number of observations less than or equal to observation j in vector z, 

divided by the total number of observations of X (Y). The number of points on the horizontal 

axes in Figures 5-6, as determined by the number of distinct values of X and Y, show the 

numbers of observations for ˆ
XF  and ˆ

YF . 

 

In the left panel of Figure 5, the bold line represents model 1, which has a Gaussian 

distribution function with mean 4.5 and standard deviation 1. The dotted line is for model 2 

and depicts the density of a Chi-square with 4 degrees of freedom. If we made the choice 

according to previous criteria based only on first moments, this would imply choosing model 

2as the mean DCC from model 2 is lower than that from model 1. However, in the right panel 

in Figure 5, which depicts the CDF for models 1 (Gaussian) and 2 (Chi-square), we see that 

the DCC values of model 2 are more uncertain, with a greater probability of either small (the 

CDF for model 2 is initially above that for model 1) or large DCC (the CDF for model 2 lies 

below that of model 1 for high DCC values). As these CDF functions cross, first-order 

stochastic dominance cannot be established. However, given the high crossing point,  

 



Second-order dominance is prospective, and we can test for it based on the cumulative areas 

under the CDFs (ICDF), as shown in the right panel of Figure 6. As the difference in ICDF 

model 2 - ICDF model 1) is always positive, this implies that model 1 second-order dominates 

model 2, and will be preferred by a risk averse risk manager, whatever their cardinal 

(concave) loss function. Choosing model 2 would imply a greater risk during periods of 

turmoil and greater uncertainty.  

 

[Insert Figures 5-6 here] 

 

This is quite important since safe practice based on a specific risk assessment function, such 

as mean-variance, or any particular quantile, may be an artefact of the particular functional 

employed, and how that functional places different weights on different quantiles, as well as 

how different quantiles are compared. This is a question of increasing risk aversion, 

embodied by, or absent from, different loss functions.   

 

The way that SD may be used to choose the best risk management strategy is as follows. For 

notational simplicity, we write 1 2
FSD

Model Model  and 1 2
SSD

Model Model whenever Model 1 

dominates Model 2 according to FSD and SSD, respectively. Let Y and X be the DCC 

produced using model 1 and model 2, respectively. Based on the previous definition, if Y 

first-order stochastically dominates X, then Y will involve higher DCC than X in the sense 

that it has a higher probability of producing higher values of DCC. Therefore, Y must be 

associated with a higher DCC than X if both X and Y require the same initial investment. In 

this context, 1 2
FSD

Model Model  would mean that the risk manager would prefer Model 2 

because the probability is higher that the bank will have to set aside less money for covering 

losses.  

 

In summary, the decision rule would be as follows:  

 

Decision Rule 

H0: Y FSD X 
If do not reject H0: 

Y dominates X 

DCC of Model 1 is likely to be 

higher than of Model 2 

Risk manager prefers 

 Model 2 to Model 1 Y= DCC of Model 1 

X= DCC of Model 2 

 



 

Graphically, FSD exists when the cumulative distribution functions do not intersect; if they do 

cross, then the FSD is statistically indeterminate. This is the case shown in Figure 5, where 

the right box includes CDFs for models 1 and 2 from the previous example. As the two CDFs 

cross, first order stochastic dominance cannot be established. From Figure 5, a significant 

amount of information in the probability distribution would be lost examining only the first or 

second moments. For example, for low values of DCC, model 2 provides a higher probability 

of having higher values of DCC, while for high values of DCC, a higher probability would be 

more likely under model 1.  

 

We can test for second order stochastic dominance (SSD) in order to account for risk 

aversion, over increasing and concave utility functions. Model 2 SSD model 1 when the area 

under the cumulative distribution for model 2 is less than the corresponding area for model 1, 

at every point on the support. In Figure 6, model 2 SDD model 1, with the graph on the right 

showing the difference in areas, which is always greater than zero over the entire range of 

possible values of DCC. This means that model 2 yields higher DCC for all but one set of 

circumstances. If this case is not too severe, SSD indicates that model 1 is better than model 

2. This testing strategy may also be extended to consider cases in which a limited part of the 

support might be of particular interest.  

 

6.  Results 

 

Table 3A describes the different alternatives analysed in the paper. Tables 3B and 3C present 

rejection rates from three different tests, namely Donald and Hsu (2013) (BB), Barret and 

Donald (BD) (2003), and Linton, Maasoumi and Whang (2005) (LMW) for the null 

hypothesis: H0: Y SD X. For example, in alternative 1, failing to reject H0 would imply that 

DCC produced by GARCH with a Student-t distribution (Y) FSD the DCC produced by 

GARCH with a Gaussian distribution (X). Following Donald and Hsu (2013), when 

Fimplementing the blockwise bootstrap, the block sizes are set to 12 and 24. The subsample 

size is set at 25. The p-values for the blockwise bootstraps method are approximated based on 

200 replications, and the p-values for the subsampling method are approximated based on 176 

possible subsamples. The significance level is set at 5%. 

 

[Insert Tables 3A, 3B and 3C here] 



 

(1) With 524-VaR forecasts, we omit the first 60 days for computing DCC values, which 

leaves a 464-observation DCC vector for computing the cumulative distribution functions that 

appear in Figures 7-13. For alternatives A, B and C in Table 3B, the BB and BD tests clearly 

show that the DCC values, assuming the Student-t distribution, first order dominate Gaussian 

distributions for all three GARCH models. As these results imply a higher likelihood of 

higher DCC under the Student-t distribution, they are preferred to the Gausssian distribution.  

 

 

Figure 7 shows the Cumulative Distribution Function (CDF) and the integrated CDF (ICDF) 

for alternative A. Regarding CDF in the left panel, dashed line, DCC produced by GARCH 

for the Student-t distribution lies ahead of the solid line, DCC produced by GARCH assuming 

the Gaussian distribution. The right panel in Figure 7 shows that DCC produced by GARCH 

assuming the Student-t distribution second order dominates DCC produced by GARCH 

assuming the Gaussian distribution, as the dashed line is always below the solid one. This 

means that GARCH assuming the Gaussian distribution would be preferred by a financial risk 

manager. 

 

[Insert Figure 7 here] 

 

(2) Assuming the Gaussian distribution, alternatives D, E and F, the three tests conclude that 

neither EGARCH nor GJR FSD GARCH, and GJR does not FSD EGARCH. Figures 8-10 

show the CDFs and ICDFs for the alternatives for one of the 500 daily simulations for DCC. 

In each case, Y CDF (dashed line) crosses X CDF (solid line), so that we do not find FSD. 

Not having found FSD, we check for SSD, but again, the hypothesis is rejected in all three 

cases. The rejection rates for SSD are given in Table 3C. Even though we cannot establish SD 

of any order, it is worth examining Figure 8 to shed light on the richness of the information 

provided by the DCC probability distributions. For low values of DCC, GARCH provides a 

higher likelihood of higher DCCs (the solid line lies above the dashed line), but this is 

reversed for high values of DCC. The right panel shows the dashed line (EGARCH) lies 

above the blue line (GARCH), and the difference between them (dashed minus solid) is 

always positive. This means that the DCC produced by GARCH SSD the DCC produced by 

EGARCH. GARCH would be preferred to EGARCH for forecasting DCC as the higher 



expected DCC of GARCH for low DCC values can be compensated for a lower degree of 

uncertainty.  

 

[Insert Figures 8-10 here] 

 

A similar intuition can be drawn from Figures 9-10 for alternative F comparing DCC 

probability distributions produced by GARCH (solid) and GJR (dashed), and by EGARCH 

(solid) and GJR (dashed), respectively. Even though these tests cannot establish either first or 

second order stochastic dominance for these particular simulations, the CDFs nevertheless 

cross. For example, the left panel in Figure 10 shows that the dashed line generally lies ahead 

of the solid line. However, in the right panel it seems that the higher expected DCC produced 

by GJR is compensated by lower uncertainty (dashed line, beneath solid line in the right 

panel), making this strategy more desirable. Therefore, based on Figures 8 and 10, GARCH 

and GJR would be preferred to EGARCH for forecasting DCC (for the Gaussian case). 

 

(3) Assuming the Student-t distribution, EGARCH FSD GARCH (alternative G) and 

EGARCH SSD GJR (alternative O). Neither GJR FSD GARCH (alternative H) nor GARCH 

FSD GJR. Figure 11 for alternative G shows that the CDF of DCC produced by EGARCH 

lies ahead of the solid line, CDF of DCC produced by GARCH. This implies a higher 

likelihood of high DCC values under EGARCH, in which case GARCH would be preferred. 

The left panel in Figure 12 shows the solid CDF (GJR) underneath the blue CDF (GARCH) at 

low quantiles, then crosses the dashed one, stays above during some quantiles, and then 

returns below the dashed CDF. Accordingly, we do not find either first or second order SD. 

Figure 13 shows the last case, EGARCH versus GJR using the Student-t distribution 

(alternatives I and O). Even though the tests in Table 3B show that EGARCH FSD GJR 

(alternative O), the selected case3 for Figure 13 does not provide clear evidence in favour of 

the hypothesis. 

 

[Insert Figures 11-13 here] 

 

In summary, the Gaussian distribution is preferred to Student-t for forecasting DCC.  

EGARCH seems to provide a higher likelihood of higher DCC when compared with GARCH 

                                                 
3 Individual simulation number 250 of 500 simulations was chosen for illustrative purposes.  



and GJR, when using the Student-t distribution. Using the Gaussian distribution for 

forecasting DCC does not lead to either first or second order stochastic dominance. However, 

on the basis of the CDF and integrated CDF, it seems that the higher expected DCC values of 

GJR or GARCH may be compensated by lower uncertainty than for EGARCH. These results 

lend support to the empirical findings in Table 5 of Chang et al. (2011), where it is shown that 

EGARCH provides the highest average DCC for all periods in comparison with GARCH and 

GJR. Moreover, Chang et al. (2011)  also show that GJR always provides higher DCC values 

than GARCH. These results notwithstanding, the SD criterion does not seem to show any 

dominance between these two models.  

 

7. Conclusions 

 

In the spectrum of financial assets, VIX futures prices are a relatively new product. As with 

any financial asset, VIX futures are subject to risk. In this paper we analyzed the performance 

of a variety of strategies for managing the risk, through forecasting VaR, of VIX futures under 

the Basel II Accord.  

 

The alternative strategies for forecasting VaR of VIX futures, and for managing financial risk 

under the Basel II Accord, are several univariate conditional volatility models, specifically 

GARCH, EGARCH and GJR, with each based on either the Gaussian and Student t 

distributions. The main criterion for choosing among the alternative strategies was 

minimizing average daily capital charges. In the paper we used a methodology based on 

stochastic dominance that permits partial ordering of strategies by accommodating the entire 

distribution of DCC values. This methodology provides a search for uniformly higher ranked 

volatility models, based on large classes of evaluation functions and the entire DCC 

distribution.  

 

The main empirical findings of the paper are as follows: 

 

1. The Gaussian models are generally preferred to their Student-t counterparts.  

2. SD relations between DCC values produced by Gaussian models are generally not 

uniformly ranked. An analysis of CDFs and ICDF seems to show, however, that 

EGARCH provides DCC distributions with greater uncertainty, so the other models 

would be preferred. A lack of uniform rankings by SD also indicates that there exist 



special utility/evaluation functions that may provide complete, albeit subjective, 

rankings.  

3. Within the class of Student-t distributions, EGARCH SD both GARCH and GJR, 

implying that EGARCH would be uniformly preferred to GARCH and GJR by a 

financial risk manager.  

4. In general, a stochastic dominance criterion can be used to rank different models of 

VIX futures and distributions, as illustrated in the previous empirical results. Even in 

cases of no FSD and SSD, the tests provide additional information about the entire 

distribution over specific ranges. 

5. The graphs of the CDFs of each pair of models allow a comparison globally for the 

whole distribution, and also locally for a given range of DCC values and probabilities. 

This allows more specific comparisons than previously afforded based on  the mean 

and other moments of the relevant distributions. 

 

In this paper we have not found an optimal model in the sense that it outperforms the other 

models during the whole sample period. On the other hand, we have restricted attention to a 

set of widely used, though not necessarily exhaustive set of forecasting models and 

distributions. This paper takes into account the number of violations as defined by the Basel 

Accord through the computation of DCC. Subsequent analysis would take into account if each 

model not only provides lower DCCs, but also satisfies the requirement of keeping the 

number of violations away from the red zone. For the VIX futures returns, all our models 

remain in the green zone. 

 

The results of the paper suggest that further work is needed to compare, not only univariate 

models, but also combinations of models, such as based on the mean or median. This 

framework presented above should also be applied to a portfolio of assets to determine the 

usefulness of the stochastic dominance approach. This paper performed pairwise comparisons 

for a variety of models. The extension to comparisons among multivariate models is a topic 

for future research, as is a detailed analysis of the useful information that is contained in the 

CDF and ICDF. 
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Figure 1  

VIX and 30-day Maturity VIX Futures Closing Prices 

 26 March 2004 -  29 November 2013 

 

 

 

Figure 2  

30-day Maturity VIX Futures Returns 

 26 March 2004 - 29 November 2013 
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Figure 3  

Histogram, Normal and Student-t Distributions 

30-day Maturity VIX Futures Returns 

26 March 2006 - 29 November 2013 

 

 

Figure 4  

Volatility of 30-day Maturity VIX Futures Returns 

 26 March 2004 - 29 November 2013 
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 6 

 

 

Figure 5. Probability density functions and CDFs  of DCC Models 

 

 

Note: In the left panel, the solid line is for model 1, a Gaussian density with mean 4.5 and standard 

deviation 1. The dashed line for model 2 depicts the density of a Chi-square with 4 degrees of freedom. 

The right panel depicts the CDFs for models 1 (Gaussian) and 2 (Chi-square). 

 

 

 

Figure 6. DCC and ICDF for models 1 and 2 and their difference 

  

Note: In the left panel, the solid line represents the integrated cumulative distribution function (ICDF) 

for a Gaussian variable with mean 4.5 and standard deviation 1. The dashed line for model 2 depicts 

the ICDF of a 4-degrees of freedom Chi-square variable. The right panel depicts the difference between 

the ICDFs given in the left panel. 
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 7 

 

Figure 7. Alternative A  

The solid line is GARCH-t and the dashed line is GARCH-Gaussian 

CDF Integrated CDF  

  

Note: In the left panel, the solid line is the CDF of DCC produced by a GARCH model assuming a 

Student-t distribution of VIX futures returns. The dashed line is the CDF of a DCC produced by a 

GARCH model assuming a Gaussian distribution of VIX futures returns. In the right panel, the solid 

and dashed lines depict the integrated cumulative distribution functions (ICDF) of the CDFs shown in 

the left panel. 

 

Figure 8. Alternative D  

The solid line is GARCH-Gaussian and the dashed line is EGARCH-Gaussian 

CDF Integrated CDF  

  

Note: In the left panel, the solid line is the CDF of DCC produced by a GARCH model assuming a 

Gaussian distribution of VIX futures returns. The dashed line is the CDF of a DCC produced by an 

EGARCH model assuming a Gaussian distribution of VIX futures returns. In the right panel, the two 

lines depict the integrated cumulative distribution functions (ICDF) of the CDFs shown in the left 

panel. 
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Figure 9. Alternative E 

The solid line is GARCH-Gaussian and the dashed line is GJR-Gaussian 

CDF Integrated CDF  

  

Note: In the left panel, the solid line is the CDF of DCC produced by a GARCH model assuming a 

Gaussian distribution of VIX futures returns. The dashed line is the CDF of a DCC produced by a GJR 

model assuming a Gaussian distribution of VIX futures returns. In the right panel, the solid and dashed 

lines depict the integrated cumulative distribution functions (ICDF) of the CDFs shown in the left 

panel. 

 

 

Figure 10. Alternative F 

The solid line is EGARCH-Gaussian and the dashed line is GJR-Gaussian 

CDF Integrated CDF  

  

Note: In the left panel, the solid line is the CDF of DCC produced by an EGARCH model assuming a 

Gaussian distribution of VIX futures returns. The dashed line is the CDF of a DCC produced by a GJR 

model assuming a Gaussian distribution of VIX futures returns. In the right panel, the solid and dashed 

lines depict the integrated cumulative distribution functions (ICDFs) of the CDFs shown in the left 

panel. 
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Figure 11. Alternative G 

The solid line is GARCH-t and the dashed line is EGARCH-t 

CDF Integrated CDF  

  

Note: In the left panel, the solid line is the CDF of DCC produced by a GARCH model assuming a 

Student-t distribution of VIX futures returns. The dashed line is the CDF of DCC produced by an 

EGARCH model assuming a Student-t distribution of VIX futures returns. In the right panel, the solid 

and dashed lines depict the integrated cumulative distribution functions (ICDF) of the CDFs shown in 

the left panel. 

 

 

Figure 12. Alternative H 

The solid line is GARCH-t and the dashed line is GJR-t 

CDF Integrated CDF  

  

Note: In the left panel, the solid line is the CDF of DCC produced by a GARCH model assuming a 

Student-t distribution of VIX futures returns. The dashed line is the CDF of a DCC produced by a GJR 

model assuming a Student-t distribution of VIX futures returns. In the right panel, the solid and dashed 

lines depict the integrated cumulative distribution functions (ICDF) of the CDFs shown in the left 

panel. 
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Figure 13. Alternative I 

The Blue line is EGARCH-t and the green line is GJR-t 

CDF Integrated CDF  

  

Note: In the left panel, the solid line is the CDF of a DCC produced by an EGARCH model assuming a 

Student-t distribution of VIX futures returns. The dashed line is the CDF of a DCC produced by a GJR 

model assuming a Student-t distribution of VIX futures returns. In the right panel, the solid and dashed 

lines depict the integrated cumulative distribution functions (ICDFs) of the CDFs shown in the left 

panel. 

 

 

 

Table 1  

Basel Accord Penalty Zones 

 

Zone Number of Violations k 

Green 0 to 4 0.00 

Yellow 5 0.40 

 6 0.50 

 7 0.65 

 8 0.75 

 9 0.85 

Red 10+ 1.00 

Note: The number of violations is given for 250 business days. The penalty 

structure under the Basel II Accord is specified for the number of violations 

and not their magnitude, either individually or cumulatively.   

  

0 100 200 300 400 500 600 700 800 900
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

 

CDF X

CDF Y

0 100 200 300 400 500 600 700 800 900
0

1

2

3

4

5

6

7

 

 

iCDF X

iCDF Y



 11 

Table 2  

30-day Maturity VIX Futures Returns  

Histogram and Descriptive Statistics for  

26 March 2004 - 29 November 2013 

 

 
 

  

Table 3A  

Definition of pairs of alternative models to be tested for stochastic dominance 

 

Alternative 
GARCH 

Gaussian 
GARCH 

Student-t 
EGARCH 

Gaussian 
EGARCH 

Student-t 
GJR 

Gaussian 
GJR 

Student-t 

A X Y     

B   X Y   

C     X Y 

D X  Y    

E X    Y  

F   X  Y  

G  X  Y   

H  X    Y 

I    X  Y 

J Y  X    

K Y    X  

L   Y  X  

M  Y  X   

N  Y    X 

O    Y  X 

 

Notes (1): The first column denotes 14 alternatives of 30 permutations of the models considered: 

GARCH, EGARCH,GJR, with two different distributions, Gaussian and Student-t, of VIX futures 

returns. FSD and SSD are tested for each alternative using three different tests, BB, BD, and LMW for 

the null hypothesis: H0: Y SD X.  

(2). For example, in alternative A, X represents the empirical distribution of DCC produced using a 

GARCH model assuming a Gaussian distribution of the VIX futures returns. Alternative Y represents 

the empirical distribution of DCC produced using a GARCH model assuming a Student-t distribution 

of the VIX futures returns. Failing to reject H0 would imply that DCC produced by option Y SD option 

X, so that,  under option Y there is a higher chance of producing a higher DCC than under option Y. 
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Std. Dev.   3.800655

Skewness   0.697327

Kurtosis   7.350578

Jarque-Bera  2195.970

Probability  0.000000
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Table 3B  

Rejection Rates for First-order SD Tests  

 

    

 
 

    Gaussian Student-t Gaussian Student 

Design A B C D E F G H I J K L M N O 

BB(12) 0.00 0.00 0.00 0.53 0.50 0.47 0.02 0.49 0.68 0.50 0.51 0.55 0.87 0.28 0.14 

BD(12) 0.00 0.00 0.00 0.45 0.43 0.42 0.01 0.45 0.67 0.42 0.46 0.47 0.87 0.25 0.11 

BB(24) 0.00 0.00 0.00 0.35 0.30 0.32 0.01 0.27 0.51 0.34 0.34 0.37 0.62 0.15 0.07 

BD(24) 0.00 0.00 0.00 0.33 0.28 0.29 0.00 0.25 0.50 0.30 0.31 0.34 0.62 0.14 0.05 

LMW 0.00 0.00 0.00 0.28 0.21 0.26 0.02 0.25 0.52 0.28 0.27 0.28 0.18 0.13 0.05 

 

 

 

 

 

Table 3C  

Rejection Rates for Second-order SD Tests  

 

    

 
 

    Gaussian Student-t Gaussian Student 

Design A B C D E F G H I J K L M N O 

BB(12) 0.00 0.00 0.00 0.44 0.38 0.37 0.00 0.40 0.67 0.40 0.46 0.48 1.00 0.19 0.05 

BD(12) 0.00 0.00 0.00 0.41 0.36 0.34 0.00 0.39 0.67 0.37 0.43 0.45 1.00 0.19 0.05 

BB(24) 0.00 0.00 0.00 0.36 0.34 0.31 0.01 0.30 0.55 0.33 0.39 0.39 0.97 0.14 0.05 

BD(24) 0.00 0.00 0.00 0.35 0.33 0.29 0.00 0.30 0.44 0.32 0.39 0.38 0.97 0.14 0.03 

LMW 0.00 0.00 0.00 0.29 0.26 0.30 0.06 0.24 0.44 0.31 0.31 0.31 0.94 0.09 0.02 

 

 

 

 


